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     In spite of the successful explanation of multitude of phenomena by Classical Mechanics and 

Electrodynamics, a large group of natural phenomena remains unexplained by Classical Physics. 

It is possible to find examples in various branches of physics, why only Physics, in all branches 

of science. Though sometimes it is thought that the Classical Mechanics satisfactorily describes 

the phenomena related to macroscopic objects and the difficulty arises only in case of 

microscopic particles,  even the physics of macroscopic bodies (solids, liquids, and gases) is not 

completely understood on the basis of Classical Mechanics when it comes to the consistent 

explanations for the structure and stability of condensed matter, for the energy of cohesion of 

solids, for electrical and thermal conductivity, specific heat of molecular gases and solids at low 

temperatures, and for phenomena such as superconductivity, ferromagnetism, super fluidity, 

quantum crystals, and neutron stars. Nuclear Physics and elementary particle physics require 

definitely new theoretical foundations in order to describe the structure of atomic nuclei, nuclear 

spectra, nuclear and the stability of nuclei, and similarly in order to make predictions concerning 

the size and structure of elementary particles, their mechanical and electromagnetic properties 

and their interactions. Even in Electrodynamics and Optics there are effects which cannot be 

understood with the help of classical theories, for example, the blackbody radiation and the 

photoelectric effect. 

All of these phenomena can be understood and can be well explained by quantum theories.  Thus 

it is very much necessary to study and understand the Quantum Mechanics. With this in view, 

the fundamentals of Quantum Mechanics have been thoroughly studied in the post-graduate 

level.  

 

In the present book an attempt has been made to introduce the fundamentals of Quantum 

mechanics. The authors have tried to present the ideas in a lucid style so that the post-graduate 

students of Karnataka State Open University can go through the same and understand the basics 

on their own. 

For the sake of understanding the syllabus this book of Quantum Mechanics has been divided 

into four blocks. The first block deals with fundamental concepts of Quantum Mechanics without 

which one cannot swim in the ocean of Quantum Mechanics. They can be called as basic / 

foundation principles of Quantum Mechanics. It starts with the understanding of a special 

experiment called Stern-Gerlach experiment – but of course not just the one that has been studied 
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in the graduation level – but the sequential one which involves several fascinating results which 

will make one to think in a new dimension. These basic ideas can be followed under the umbrella 

of Vector algebra – Linear vector space! 

The second block deals with Quantum dynamics. Yes, we know what is meant by dynamics. 

Here we can understand the way in which one can study the behavior of particles not only as a 

function of space but also as a function of time! Starting from the setting up the Schrödinger 

equation for the wave function, one can study the linear harmonic oscillator problem and even 

move over to study the two body problem                                                                                                                              

   

              The third block is dedicated to the study of the theory of angular momentum wherein 

one can study the commutation relations; Spin half systems, finite rotations, Eigen values and 

eigenstates of angular momentum, addition of angular momentum and then various symmetries. 

   

 The fourth and the final block is named as Approximation methods in which perturbation 

theory and the Variational methods are discussed in detail.  

This SLM has adopted such a method so that the material helps the individuals to understand the 

underlying principles and get a good flavor of the subject and also get motivated to study other 

reference books in order to go to the depth of the subject.  
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Unit 1: The Stern-Gerlach experiment, kets, bras and operators, base kets and matrix 

representations. 

Structure: 

1.0 Objectives 

1.1 Introduction 

1.2The Stern-Gerlach experiment  

1.3 Operators in Quantum mechanics 

1.4 Ket and Bra notation of vectors 

1.5 Matrix representation theory 

1.6 Let us sum up 

1.7 Key words 

1.8 Problems 

1.9 Questions for self study 

1.10 References for further study 
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1.0 Objectives:  

After studying this unit you will be able to understand the following aspects: 

 The Sequential Stern-Gerlach experiment 

 The Operators used in Quantum mechanics 

 The Bra and Ket notations used for vectors  

 The Matrix representation theory used in Quantum mechanics 

 

1.1 Introduction: 

Several experimental evidences conclusively demonstrated that light was an electromagnetic 

phenomenon. But the understanding of the emission and absorption of radiation by matter posed 

some difficulties. However this difficulty was partially resolved by making some ad-hoc 

assumptions regarding the structure of matter. It was assumed that atoms and molecules, which 

constitute matter, consist of electron oscillators, begin to oscillate under the influence of some 

external source of excitation. Since the oscillating electron is an accelerated charged particle, it 

radiates electromagnetic radiation. 

Therefore, when electromagnetic wave is incident on such an atomic oscillator, electrons are 

set into forced oscillations, which in turn emit electromagnetic waves of frequency equal to that 

of the incident wave. To explain the phenomenon of absorption it was assumed that some kind of 

dissipative force of viscous type, whose exact origin was not known at that time, act on atomic 

oscillator. The transformation of incident electromagnetic energy into other form on account of 

dissipative forces causes loss of energy. At the end of 19th century, like classical mechanics, the 

electromagnetic theory of radiation was regarded as the ultimate theory of radiation. At this time 

when the classical physics was at the peak of its accomplishments, some physicists were facing 

problems that could not be understood within the framework of classical physics. Some of the 

most outstanding problems among them were (i) the explanation of line spectrum emitted by 

elements in gaseous state (ii) the photoelectric effect, (iii) the distribution of energy in the 

spectrum of a black body. Probably, the understanding of these phenomena indicated a different 

aspect of the nature of radiation. In other words, the understanding of phenomena associated with 

interaction of radiation with matter requires a fundamental change in our   concepts regarding the 
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nature of radiation and the structure of matter. The theory, which regards radiation as stream of 

particles (called quanta) is called quantum theory of radiation.  

Classical Mechanics Vs Quantum Mechanics 

Classical Mechanics: the goal of classical mechanics is to determine the position of a particle at 

any given time x(t). Once we know x(t) then we can compute the velocity vx=dx/dt, the  

momentum  Px=mvx the kinetic energy 2 / 2 ,xT P m or any dynamical variable. 

Classical Equation of Motion: Newton‘s Laws for a particle under the influence of potential 

V(x) are as follows:  

( )x
x x x

dp dV x dx
F ma with P

dt dx dt
      

To determine x(t) one must solve the Newton‘s equation  

2

2

( ) ( )d x t dV x
m

dxdt
   

With the appropriate initial conditions (typically the position and velocity at t =0 ) 

Quantum Mechanics: In Quantum Mechanics the situation is much different. In this case we 

are looking for the particles‘ wave function ( , )x t  which is the solution of Schrödinger‘s 

equation: 

2 2

2

( , ) ( , )
( ) ( , ) '

2

x t x t
V x x t i Schrodinger s Equation

m tx

 


 
    




  

34

1

1.054572 10 .
2

wherei and

h
J s





 

  
  

The wave function is a complex function and Schrödinger‘s equation is analogous to Newton‘s 

equation. Given suitable initial conditions (typically ( ,0)x ), one can solve Schrodinger‘s 
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equation for ( , )x t for all future times just as in classical physics, Newton‘s equation determines 

x(t) for all future times.  

1.2  Stern-Gerlach Experiment: 

           The theory of spatial quantization of the spin moment of the momentum of electrons of 

atoms situated in the magnetic field needed to be proved experimentally. In 1920 (two years 

before the theoretical description of the spin was created) Otto Stern and Walter Gerlach 

observed it in the experiment they conducted. 

         The atoms of silver from the source which was the furnace with boiling silver were lead to 

the vacuum space. There the flat beam of those atoms was created. Then the beam got into non-

homogeneous magnetic field and incident a photographic plate. Using classical physical laws we 

would expect the single picture of the beam on the plate, whereas, the beam of atoms passing 

through non-homogenous magnetic field undergoes splitting. That is why Otto Stern and Walter 

Gerlach received the two lines on the photographic plate.  

 

 

 

 

 

 

 

 

  The phenomena can be explained with the spatial quantization of the spin moment of 

momentum. In atoms the electrons are located in such way that in the each next pair of electrons 

there is one of the upward spin and one of the downward spin. So the whole spin of such pair is 

equal zero. But in the atom of silver on the outer shell there is a single electron whose spin is not 

balanced by any electron. 

   The circulation causes some magnetic dipole moment (it's like it was a very small 

magnet). There is a force moment in the magnetic field influencing the dipole that is turning it 

until its position is the same as the direction of the field B. There is some other force influencing 
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the dipole in the field. When the dipole is directed the same as the magnetic field then the dipole 

is pulled by that force in to the space of a strongest field. But if the dipole is directed opposite to 

the fields direction is pulled by that force out from the space of a strongest field.  

           So the atom of silver having one electron on the outer shell can be pulled in or out the 

space of a strongest magnetic field, which depends on the value of the magnetic spin quantum 

number. When the spin of the electron is equal +1/2 the atom is pulled out and when the spin is 

equal -1/2 the atom is pulled in. So during passing through the non-homogenous magnetic field 

the beam of the atoms of silver undergoes splitting into the two beams. Each of them consists of 

atoms which outer electrons are of the same spin. 

Let us now consider a sequential Stern-Gerlach experiment. By this we mean that the 

atomic beam goes through two or more SG apparatuses in sequence. 

 

The first arrangement we consider is relatively straightforward. We subject the beam 

coming out of the oven to the arrangement shown in Figure 1.3a, where SGz stands for an 

apparatus with the inhomogeneous magnetic field in the z-direction, as usual. We then block the 

Sz — component coming out of the first SGz apparatus and let the remaining Sz + component be 

subjected to another SGz apparatus. This time there is only one beam component coming out of 

the second apparatus—just the Sz + component. This is perhaps not so surprising; after all if the 

atom spins are up, they are expected to remain so, short of any external field that rotates the spins 

between the first and the second SGz apparatuses.    
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  In the second case; The Sz + beam that enters the second apparatus (SGx) is now split into 

two components, an Sx + component and an Sx -component, with equal intensities. 

In the third case: It is observed experimentally that two components emerge from the 

third apparatus, not one; the emerging beams are seen to have both an Sz + component and an Sz 

— component. 

This is a complete surprise because after the atoms emerged from the first apparatus, we 

made sure that the Sz - component was completely blocked. 

How is it possible that the Sz — component which, we thought, we eliminated earlier 

reappears? 

How to explain the observed effect? 

 This can be explained by using the analogy with the polarization triple filter experiment. 

It is reasonable to represent the Sx + state by a vector, which we call a ket in the Dirac notation 

which we have already discussed earlier. We denote this vector by; 

;xS   and write it as a linear combination of two base vectors, ;zS  and ;zS  which 

corresponds to the Sz + and the Sz – states , respectively. So we may conjecture. 

?

?

1 1
; ; ; (1)

2 2

1 1
; ; ; (2)

2 2

x z z

x z z

S S S

S S S

     

     

 

Thus the unblocked component coming out of the second ( x̂SG ) apparatus of Fig 1.3c is to be 

regarded as a superposition of Sz + and Sz – in the sense of equation (1). It is for this reason that 

two components emerge from the third ( ẑSG ) apparatus. 

Applying this with the analogy of circularly polarized light, we see that if we are allowed to 

make the coefficients preceding base kets complex, there is no difficulty in accommodating the 

Sy ± atoms in our vector space formalism: 

 
? 1 1

; ; ; (3)
2 2

y z zS S S       

 We thus see that the two-dimensional vector space needed to describe the spin states of silver 

atoms must be a complex vector space; an arbitrary vector in the vector space is written as a 

linear combination of the base vectors ;zS   with, in general, complex coefficients. The fact 
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that the necessity of complex numbers is already apparent in such an elementary example is 

rather remarkable. 

1.3 Operators in Quantum mechanics: 

An operator is a rule or an instruction which transforms a function into another function. Liner 

operators play a very important role in quantum mechanics. If Q̂ is an operator and f(x) is an 

arbitrary function then the action of Q̂ on f(x) is represented as  

ˆ ( ) ( ) (1)Qf x g x   

Where g(x) is another function and is constant. A linear operator is one which satisfies the 

following two conditions: 

 1 2 1 2
ˆ ˆ ˆ (2)

ˆ ˆ( )

Q f f Qf Qf

Q cf cQf where c is an arbitary constant

     


 

Algebra of Operators: 

(i) The sum and difference of two operators ˆP̂ and Q are defined by equations 

 

 

ˆ ˆˆ ˆ( ) ( ) ( )

ˆ ˆˆ ˆ( ) ( ) ( )

P Q f x Pf x Qf x

P Q f x Pf x Qf x

  

  

 

(ii) The product of two operators ˆP̂ and Q  is defined by equation  

ˆ ˆˆ ˆ( ) ( )PQf x P Qf x 
 

 

In above equation we first operate on f(x) with the operator on the right of the operator product 

and then we take the resulting function and operate on it with the operator on the left of the 

operator product  

(iii) The operators are said to be equal if  

ˆˆ ( ) ( )Pf x Qf x  

(iv) The operator Î (multiplication by 1) is the unit operator. 

(v) The operator Ô  (multiplication by 0) is the null operator. 

(vi) The square of an operator is defined as the product of the operator with itself. 
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2ˆ ˆ ˆQ QQ  

The nth power of an operator is defined to mean applying the operator n times in succession. 

(vii) Operators obey associative law of multiplication   

ˆ ˆˆ ˆ ˆ ˆ( ) ( )P QR PQ R  

An important difference operator algebra and ordinary algebra is that numbers obey commutative 

law of multiplication but operators do not necessarily do so. That is ˆ ˆˆ ˆPQ QP are not necessarily 

equal operators.  

(viii) We defined the commutator  ˆˆ ,P Q 
 

 of operator ˆP̂ and Q as operator ˆ ˆˆ ˆPQ QP  

ˆ ˆ ˆˆ ˆ ˆ,P Q PQ QP   
 

 

If ˆ ˆˆ ˆPQ QP the ˆˆ ,P Q 
 

=0 and we say that ˆP̂ and Q commute. 

Operators of some Dynamical variables: 

The wave function of a free particle moving in three dimensional spaces is given by  

 
( , , , ) e (4)

,

(5)

x y z

i
Et p x p y p z

x x

y

z

x y z t A

Partial derivativeof with respect to x is

i
p or i p

x x

i p
y

i p
z

similarly

i E
t





 
 










 
    
   

 
  

 


 




 




   














 

  A close look at the above equation reveals that the dynamical variables px, py, pz and E are in 

some sense related to the differential operator , , .i i i and i respectively
x y z t

   
  

   
     

Let us list out few dynamical variables and their corresponding operators: 
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2

2

x

y

z

p

p

p

p

E

p
Kinetic enrgyT

m


 

2
2

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ
2

x

y

z

P i
x

P i
y

P i
z

P i

E i
t

T
m


 




 




 



  






 













 

 

The Hamiltonian (Total Energy) function of a mechanical system is given by; 

2

2

p
H V

m
   

Its corresponding operator is  

 
2

2ˆ (6)
2

H V
m

        


 

For a conservative system the total energy is represented by the Hamiltonian function H 

expressed in terms of the position coordinates and conjugate momenta. Hence the energy 

operator is given by  

2
2ˆ ˆ

2
H V and not i

m t


   




  

There is no operator for time. 

In view of the equation (5), the time independent Schrödinger‘s equation can be written as  

2
2

ˆ (7)

(8)
2

H E

or V E
m

 

  

 

    
  

which is an eigen value equation.  
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Angular momentum operator: In classical mechanics the angular momentum of a particle is 

given by  

, ,

var

ˆ

ˆ

ˆ (9)

x y z

x z y y x z z y z

x

y

z

i j k

L r p x y z

p p p

L yp zp L zp xp L xp yp

Theoperators corresponding tothese iables are

L i y z
z y

L i z x
x x

L i x y
y x

  

     

  
   

  

  
   

  

  
    

  

  







 

Notice the kind of symmetry in the expression for operator Lx. By carrying a cyclic permutation 

of x, y, z (i.e., replacing x by y, y by z, z by x) we can get operator of ˆ ˆ
y zL and L . 

The Eigen value equation: 

In general, each physical quantity is represented by a linear operator and for each operator one 

can set up an equation of the type 

ˆ
q qQu qu  

i.e., the effect of the operator is to multiply the function uq by constant factor q. is an Eigen value 

equation. The solutions of above equation satisfying the set of conditions can be found not for all 

values but for selected values of parameter q. These special values of the parameter q are called 

the Eigen (characteristic) values of the operator Q̂  and the functions uq which satisfy the above 

equation are called the Eigen (characteristic) functions of the operator.  

When a system is in an eigenstate uq of Q̂  the dynamical variables Q has a definite value equal to the 

Eigen value q. That is the uncertainty in the value of Q is zero if the system is in one the Eigen 

states of Q̂  and the physical quantity Q is said to be quantized. The meaning of equation (3.7.1) 

is that if the system is in the eigen state uq the measurement of the quantity Q will yield only one 

number q . The set of all Eigen values of Q̂  forms a spectrum called eigen value spectrum. The 

spectrum may be discrete or continuous or partly discrete and partly continuous. If there exists 

only one Eigen function belonging to a given eigen value is said to be non –degenerate. It may 

happen that several Eigen functions may belong to a single eigen value. Then this eigen value is 
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said to be degenerate. if uq and vq belong to the same eigen value q , then their linear combination 

c1uq+c2vq, for all values of c1 and c2 is also an eigen function belonging to the same eigen value. 

 1 2 1 2 1 2
ˆ ˆ ˆ ( )q q q q q qQ c u c v c Qu c Qv q c u c v      

Thus a degenerate eigen value corresponding to an number of eigen function the totality of eigen 

functions belonging to a degenerate eigen value forms a linear space called eigen space. The set 

of all eigen functions belonging to a given degenerate eigen value is closed under linear 

combination. This implies that any linear combination of members of the set of eigen functions it 

is always possible to choose a subset of linearly independent eigen functions say uq1 , uq2……uqr 

such that any eigen function belonging to the eigen value q can be expressed uniquely as linear 

combination of the type (c1uq1+c2uq2+………..+cruqr) with suitable co efficients c1, c2….cr .       

The set of independent function uq1,uq2……….uqr is said to span the linear space and this set of 

functions is said to form the basis functions of the space. The number r is characteristic of the 

space. This means that out of infinite number of eigen functions belonging to a given degenerate 

eigen value there exists only a definite number say r of linearly independent functions. This 

number r is called the degree of degeneracy and the eigen value is said to be r-fold degenerate  

Operators simplified: 

Operators  

 An operator on a linear vector space defines a relationship between two vectors  

Ex- ÂX Y  

Operators  

 An operator on a linear vector space defines a relationship between two vectors  

Ex- ÂX Y  

If Â is a rotation operator it rotates the vector X to result in the vector Y. Â has a meaning only 

with reference to a set of vectors. The space on which  is defined i.e., set of vectors X for 

which  has meaning is called the domain of . The set of vectors Y which can be expressed 

as Y= X is called the range of . In a linear vector space if X1 and X2 are in the domain of  

then (c1x1+c2x2) is also in domain of .  

An operator  is said to be linear if  

 (C1X1+C2X2)=C1( X1)+C2( X2) 

Â

Â Â

Â Â Â

Â

Â

Â Â Â
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Is anti linear if  

     * *
1 1 2 2 1 1 2 2

ˆ ˆ ˆA C X C X C AX C AX    

Ex- differential operator d/dx is a linear operator  

  1 2
1 1 2 2 1 2

1 1 2 2 1 1 2 2

( ) ( )

( )

ˆ: 0

ˆ ˆ:

ˆ ˆˆ ˆ:

ˆ ˆˆ ˆ( , ) ( , )

df dfd
C f x C f x C C

dx dx dx

Squaring in a non linear operator

Sq C X C X SqC X SqC X

Null operator OX

Unity opertor IX X or IX X

equality A Bif AX BX

A B if X AX X B X

  



  



 

 

 

 

ˆ ˆ ˆ ˆˆ ˆ:

ˆ ˆ ˆ ˆˆ ˆPr : ( )

ˆ ˆ ˆˆ ˆ ˆ& . .,

Sum C A B if CX AX BX

oduct C AB if CX A BX

In general A B do not commute i e AB B A

   

 



 

ˆ ˆ: &

ˆ ˆ ( )

ˆˆ ( ) ( )

ˆ ˆ ˆˆ ˆ ˆ, ( ) ( ) (1 )

ˆ ˆ ˆˆ ˆ. ( ) ( ) 1 ( )

ˆ. 1

1̂

d
Example consider A x B

dx

df
Then ABf x x

dx

d dx df df
BAf x xf x f x f x

dx dx dx dx

i e BAf x f ABf x AB f

i e AB BA f x f x

d d
i e x x

dx dx

d d
or x x

dx dx

  



    

   

  

  

 

 

2 2

1

1

ˆ ˆ ˆ ˆ ˆ ˆ: ; ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )

ˆ ˆ ˆ ˆˆ ˆ ˆ: 1 . .,

n n

Power A AA A X A AX

A AA AAA A n factors

Inverse If AB BA then they are said tobe receprocal of eachother i e B A





 

  

  

 

An operator for which an inverse exists is said to be non singular where as one for which no 

inverse exits is called singular  
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1 1 1 1ˆ ˆ ˆ ˆˆ ˆABC C B A
     

Function : function of an operator can be formed by combining the operations of 

addition and multiplication  

i.e., 
2

2
ˆˆ 1

d d
F a b c

dxdx
    

is a function of the differential operator 
d

dx
. 

Function of a liner operator is a linear operator i.e.,  

 1 1 2 2 1 1 2
ˆ ˆ ˆ( ) ( ) ( ) ( )F c f x c f x c Ff c Ff    

Eigen values and Eigen vectors of an operator: 

 ˆWehave AX Y  

But there may be some vector X with the property ÂX X where α is scalar. Then X is called 

an eigen vector (eigen function) of Â belonging to the eigen value α .The equation is called as 

eigen value equation for Â . 

In general, a linear operator will have several eigenvalues and eigen vectors. 

i.e ˆ
k k kAX X  

The set  k of all eigenvalues takentogether consistutethe spectrumof theoperator  

The eigen values may be discrete, continuous or partly discrete and partly continuous. An eigen 

vector belongs to only one eigen value. 

But several linearly independent eigen vectors may belong to the same eigen value. In this case 

the eigen value is said to be degenerate, and the number of linear independent eigen vectors is 

called the degree of degeneracy. 

In general, a linear operator will have several eigen values and eigen vectors. 

i.e., ˆ
K K KAX X  
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The set  K of all eigen values taken together constitute the spectrum of the operator. The eigen 

values may be discrete, continuous or party discrete or partly continuous.  

An eigen vector belongs to only one eigen value. But several linear independent eigen vectors 

may belong to the same eigen value. In this case the eigen value is said to be degenerate. And the 

number of linearly independent eigen vectors is called the degree of degeneracy.  

Ex- consider the operator 
2

2

d

dx


 

2

2

2

2

We have the eigen value equation ( ) ( )

. ( ) 0

d
x E x

dx

d
i e E x

dx

 






 
    
 

 

The two linearly independent eigen vectors for this case are:  

2( ) ( ) .ipx ipx
p px e and x e where P E  

    

Here both the eigen vectors belong to same eigen value E. Hence E is 2 fold degenerate. If p is 

continuous, then the eigen value is continuous. 

Eigen value of the square of an operator is the square of the eigen value of the operator. 

If 2 2ˆ ˆ ˆ ˆ ˆ ˆ; ( ) ( ) ( )AX X A X A AX A X AX X         

Hermitian operator : 

An operator Â  is said to be Hermitian or self adjoint if  

†

†

ˆ ˆ

ˆ ˆ

A A

anti Hermitian if A A



  
 

Properties of Hermitian operators: 

1) The eigen values are real. 

2) Eigen vectors belonging to different eigen values are orthogonal. 

3) Set of all eigen vectors of a bounded Hermitian operator forms a complete set. 
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Unitary operator: 

A linear operator Û is unitary if it preserves the Hermitian character of an operator under a 

similarity transformation. 

Similarity transformation of an operator Â by a non – singular operator Ŝ is defined as 

1ˆ ˆ ˆ ˆ ˆ'A A SAS  . 

Thus the condition for Û to be unitary is that , 

 
†

1 1ˆ ˆˆ ˆ ˆ ˆUAU UAU   

Where 
†ˆ ˆA A  

1.4 Bra and Ket notation for vectors: 

Consider the scalar product (X,Y). Here we have a prefactor and a postfactor. Thus we have a 

space of post factors. A vector in the prefactor space is denoted by a bra {< | } and a vector in the 

post factor space is denoted by a ket | > . Thus X and Y in (X,Y) can be written as x and y

respectively and scalar product of Y by X as X Y . 

i.e ( , )X Y X Y Y X


   

Thus prefactor space is called as bra-space and post factor space is called as ket space.  

Also we have 
*
.X X and Y Y


   

Thus the two spaces are not independent of each other. They are said to be dual to each other. Or 

they are said to have dual correspondence. Every vector in one space has its image in the other 

space.  

Ket space Bra space 

ˆ

X

c X

Z X Y

Y A X

 



 

ˆ

X

X C

Y X Z

X A Y



 



 

Here we have:  

Orthonormality condition; i j iju u   
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Completeness condition: 1̂j ju u   

Projection operator; ˆ j j ju u   

 

Matrix representation theory: 

Representation theory: 

Consider an orthogonal basis j
N

u 
 

in an N-dimensional space. Any vector in this space can be 

expanded in terms of the vector ju  

Thus, if  X and Y  are some arbitrary vectors,  

We have  

1

1

1

*

1

N

j j

j

N

j j

j

N

j j

j

j j j

N

j j

j

X x u

Y y u

Consider a vector Z such that

Z a X b Y with Z z u

then Z ax by

and X Y x y













  

 











 

Thus in place of abstract vectors , |X Y   one can use their ordered expansion co efficients or 

components. 

   1 2

1, 2,

, ,...............

[ ] [ ............. ]

N

N

x x x x

and y y y y




 

They are called as the representation of the vectors. 

Thus we can write,  
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[Z]=a[x] + b[y] 

Or [Z1,Z2--------------ZN]=[ax1+by1;ax2+by2………….axN + byN] 

This representation depends on the basis. Change of basis will change the representatives also. 

But with respect to a given basis, the representation [x] corresponding to X is unique. 

Thus we say that the X is represented by [x] in the representation defined by the basis j
N

u 
 

. 

The basis vectors themselves are represented by [u1], [u2]-----------[uN] 

Where 

1

2

[ ] [1,0,0........................0]

[ ] [0,1,0........................0]

[ ] [0,0,0,.....................1]N

u

u

u








 

The representative [x] of a ket vector X can be written in the form of a column matrix x;  

1

2. ., [ ]

N

x

i e X X x x

x

 
 

  
 
  

 

whereas representative of the bra vector X  is represented by a row matrix; 

* * * *
1 2[ , ........... ]NX x x x x   

Then we have vector addition; Z=ax+by and scalar product; †x y matrix product . 

The unit vector are represented by  

1 2

1 0 0

0 1 0

0 0 0
, ..............................

. . .

. . .

0 0 1

Nu u u

     
     
     
     

       
     
     
     
     

 

Then we have  



 
 
 
Course MP 2.2  Block 2.2A KSOU 

18 
 

†

†

Orthonormality condition

( )

ˆ

i j j iji

j j j j
j j

u u u u

Completeness relation condition u u u u I

Theoperator equation A X Y

 

 



 
 

Is represented by the matrix equation Ax = y 

Since both x and y are (Nx1) matrices, A must be an (N X N) matrix. Thus an operator in an N-

dimensional space is represented by a square matrix of the order N. 

The properties of the linear operators thus follow from the properties of the square matrices. 

This scheme of representing vectors and operators by matrices is called as Matrix representation.  

Matrix elements of Â :  

1 1 1

1 1

1

ˆConsider the equation

ˆ ˆ:

ˆ

ˆ (1)

i

N N N

i i k k k k

i K k

j

N N

i i j j k k

i k

N

i j k k

k

Y A X

Expanding Y and X interms of unit vectors u

we get y u A x u x A u

Taking the scalar product of equation with u we have

y u u u A u x

y u A u x

B

  

 





 



 

  

 



(2)

(1)&(2)

ˆ (3)

j jk k

jk j k

ut we have y A x

comparing we seethat

A u A u

 

 

 

i.e., the jk
th

 matrix element of the matrix A that represents the operator Â in the representation 

defined by the basis j
N

u 
 

is the scalar product of the vector ˆ
kA u by the vector ju . 

If Â   is one of the complete set of commuting operator that define the basis then  

ˆ (4)

(5)

. (6)

k k k

jk j k k

jk ij k

A u u

Sothat A u u

i e A
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Thus A is diagonal. That is, an operator is represented by a diagonal matrix in a representation 

defined by its own eigen vectors (Eigen values of a diagonal matrix are its diagonal elements) 

Thus we have 

† †

†

1

' ( ')

. ., ' '

ˆ

' ' ' (4)

(2) '

x U Ux S x

i e x s x and x Sx

Consider linear transformation Y A X

which is represented by the matrix equation y Ax and y A x

in representations U and respectively

From we have x Sx and y Sy

 

 



  

 

U'

 

Using this (3) becomes †

†

' '

' ( ) ' (5)

(4) (5) ; ' (6)

sy ASx

or y S AS x

Comparing and we get A S AS



 

 

 

Equations (1),(2), and (6) represent the transformation laws for vectors and operators under 

change of basis. Thus change of basis corresponds to a unitary transform it can be seen that 

1 † †' 'U A U UAU i.e., product †( )UAU is invariant under change of basis. 

1.6 Let us sum up: 

 Classical mechanics fails to explain several observed phenomena. Though it 

explains everything that is exhibited by macroscopic particles, it fails to do so 

when applied to the case of micro-particles. Hence understanding the physics in the 

light of quantum mechanics plays a vital role.  

 Micro-particles such as electrons exhibit matter waves. They even exhibit 

the existence of wave packets.  The Stern-Gerlach experiment provides concrete 

proof for the existence of ―Spin‖ for the Quantum-mechanical particle. The 

sequential Stern-Gerlach experiment shows that there are spin states which can be 

represented as linear combinations of each other.   
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 Operators play an important role in quantum mechanics. For every physical 

observable there exists an operator which when operates on the state function, 

gives the various values of that observable.   

 The state vectors can be represented using Bra and Ket notations. The matrix representation 

theory shows that there is a correspondence with the linear vector space.  

1.7 Key words: 

The Stern-Gerlach experiment  

Operators  

Linear vector space 

Ket and Bra notation of vectors 

Matrix representation theory 

1.8 Problems 

Ex-1 obtain expression for the following operators  

2 2 2

2

2
2

2

2 2
2

2

2

( ) , ( ) , ( ) ( )

ln :

( )

2 ( 1)

2 1

( )

d d d
i x ii x iii x

dx dx dx

So

d d d
i x x x

dx dx dx

d d
x x

dx dx

d d
x x

dxdx

d d d
x x x

dx dxdx

d d
ii x x x

dx dx

 




 




     
     

     

    
       

    

  
    
  

   

 
      

 

   
   

   

2

2

2
2

2

d d d
x x

dx dx dx

d d
x x

dx dx

d d
x x

dx dx
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2 2
2

2

2

2

2
2

2

2 2
2

2

( )

2

3 1

d d d
x x x

dx dxdx

d d d d d
iii x x x x x

dx dx dx dx dx

d d
x x

dx dx

d d
x x

dx dx

d d d
x x x

dx dx dx

d d d
x x x

dx dxdx

  







  


 
  

 

       
        

       

 
  

 

 
  

 

   

 
   

 

 

Ex-2: Find the value of constant A which makes the function exp(-x
2
) an eigen function of the 

operator 
2

2

2

d
Ax

dx

 
  

 

. What is the corresponding eigen value? 

Soln: Eigen value equation of the given operator is 

2 2

2 2

2

2
2 ( ) ( )

2

2 2 2 ( ) ( )

( ) 2 2 2

2

e e ,

( 2 4 )e e

e (4 2 )

.

x x

x x

x

d
Ax q q is eigenvalue

dx

x Ax q

The function will be an eigen function of the given operator if x Ax is

independant of x That is the coefficient of x must vani

 

 



 

 

 

 



 
   

 

   

 

2 2

2

2 2

2 2

2

2 2 ( ) ( )

2

( )

. ,

4 0 4

exp

4

4 e e

2 e

2

x x

x

sh Thus

A or A

The ression for operator now becomes

d
x

dx

The eigen value equation is

d
x q where q is eigenvalue

dx

is the eigen value of the given operator

 



 









 



  

 
 

 

 
  

 

 



 

Example -3  

The vectors in  a three dimensional complex vector space are defined by 
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2 1 3

7 4

1 8

6 5

( ) , , ( ). ( ) ( ).

( ) | , |

i

A i B

Let a i

a Compute a A a B and a A B Show that a A B a A a B

b Find the inner products A B B A

   
   

     
   
   

 

   

  

( )

2 (6 5 )2 12 10

(6 5 ) 7 (6 5 )( 7 ) 35 42

1 (6 5 )1 6 5

1 3 (6 5 )(1 3 ) 9 23

(6 5 ) 4 (6 5 )4 24 20

8 (6 5 )8 48 40

12 10

35 42

a

i i

a A i i i i i

i i

i i i i

a B i i i

i i

i

a A a B i

      
     

            
           

         
     

          
           



   

9 23

24 20

6 5 48 40

12 10 ( 9 23 ) 3 33

35 42 (24 20 ) 59 22

6 5 (48 40 ) 54 45

,

2 1 3 2 1 3

7 4

1 8

i

i

i i

i i i

i i i

i i i

Nowadding thevectors first we have

i i

A B i

    
   

    
       

       
   

        
         

     
   

        
   
   

3 3

7 4 4 7

1 8 9

3 3 (6 5 )(3 3 )

( ) (6 5 ) 4 7 (6 5 )(4 7 )

9 (6 5 )9

18 15 18 15 3 33

24 20 42 35 59 22

54 45 54 45

i

i i

i i i

a A B i i i i

i

i i i

i i i a A a B

i i

   
   

     
      

     
   

          
      

      
   

          
       

  

(b) First we compute |A B  . To form the dual vector of A , we compute the complex 

conjugate of its elements and then transpose the result to form a row vector . 
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*

2 2

7 7 (2 7 1)

1 1

A i i A i

   
   

        
   
   

 

1 3

(2 7 1) 4 2(1 3 ) 7 (4) 1(8) 10 34

8

.

and sotheinnerproduct is

i

A B i i i i

Now we compute B A Thecomplexconjugate of B is givenby

 
 

       
 
 

 

*

*

1 3 1 3

4 4

8 8

(1 3 4 8)

2

(1 3 4 8) 7 (1 3 )(2) (4)( 7 ) (8)(1) 2 6 8 10 34

1

i i

B

Now we transpose this to get dual vector

B i

and sotheinner product is

B A i i i i i i

    
   

    
   
   

 

 
 

             
 
 

 

Notice that B A  = A B  a result that holds in general for the inner product in a complex 

vector space. We now list this and other important properties of the inner product 

1.9 Questions for self study: 

1. Give an account of the failure of classical mechanics. 

2. Discuss the sequential Stern-Gerlach experiment and comment on its results.  

3. List out various operators used in Quantum mechanics.  

4. Distinguish between ket space and bra space.  

5. Give the matrix representation theory in quantum mechanics.  

1.10 References for further study: 

1. Griffiths D.J., Introduction to electrodynamics, 5th edn., prentice-hall of India, New Delhi, 2006. 

2. Sakurai JJ. And Tuan S.F. (editor), Modern quantum mechanics, addison wesley, India, 1999. 

3. Shankar R., Principles of quantum mechanics, 2nd edn., Plenum press, New Delhi, 1984. 

4. L.I.Schiff, Quantum mechanics 3rd. Edn. McGraw-Hill Kogakusha Ltd. New Delhi 1968. 
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Unit 2: Measurements, observables and the un-certainty relations, compatible and incompatible 

observables, change of basis. 

Structure: 

2.0 Objectives 

2.1 Introduction 

2.2 Heisenberg‘s uncertainty principle 

2.3 Compatible and incompatible observables 

2.4 Change of basis 

2.5 Let us sum up 

2.6 Key words 

2.7 Problems 

2.8 Questions for self study 

2.9 References for further study 
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2.0 Objectives:  

After studying this unit you will be able to understand the following aspects; 

 Heisenberg uncertainty principle 

 Compatible and incompatible observables 

 Change of basis 

2.1 Introduction: 

The dual nature of matter and radiation requires profound changes in our concepts built 

on the basis of common sense and everyday experience. The formulation of classical mechanics 

implies that the position and momentum of a particle are assumed to have well defined values 

and can be determined simultaneously with perfect accuracy. But the ‗wave-particle duality‘ 

compels us to abandon the idea of simultaneous determination of position and momentum with 

perfect accuracy. Whenever we do some measurement, there is always some uncertainty 

associated with it. This plays an important role in the understanding of Physics in the light of 

Quantum mechanics. Now let us move further in order to understand this idea of uncertainty 

principle.  

2.2 Heisenberg’s Uncertainty principle or Principle of indeterminacy:  

In 1927 Werner Heisenberg, a German physicist, enunciated that it is impossible to 

determine both position and momentum simultaneously with perfect accuracy. If Δx is the 

uncertainty in position and Δpx is the uncertainty in the corresponding momentum then 

.xP x       

Similarly if E is the uncertainty in energy and  t is uncertainty in time then 

.E t     

 It is evident that if we try to measure the position of particle with utmost accuracy i.e., 

0,x  the corresponding uncertainty in momentum becomes very large i.e., xP  and vice 

versa. 

Let us illustrate the above assertion. Consider a particle having well-defined momentum

( )xP k  . Such a particle has well defined k or   and is represented by a sinusoidal 

(monochromatic wave) has no beginning and end i.e., it is infinitely long; its amplitude is 

constant for all values space co ordinates x and therefore the particle may be anywhere between

x to   . Thus the position of the particle is completely uncertain  x  . 

Now consider a particle having well-defined position  0x  . A wave packet having 

very small extension in space describes such a particle. Fourier‘s transform of this wave packet 
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shows that it is formed by superposition of a very large number of waves having continuous 

distribution of k or   within a large of k . Thus the uncertainty in k or p is very large 

 k   

 

Fig. 2.1 

Thus a particle with relatively small uncertainty in momentum has large uncertainty in position. 

A sinusoidal wave has well defined frequency and so is its energy  E   . A particle described 

this e wave also has well defined energy E and therefore E =0. In order to see the constancy of 

amplitude of such a sinusoidal wave which exits from t to    , we have to look for a very 

long time . Therefore the uncertainty in time is infinite  t  .  

 

Fig 2.2 Some wave packets and their Fourier’s transforms, 1x k    

Consider a particle, which is described by a wave packet as shown in fig (2.8.2). The Fourier‘s 

transform of the wave packet is also shown adjacent to it. Let x be the spread of the wave 

packet in space and k the spread in propagation constant. It can be shown by standard 

mathematical technique that  

1x k    
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Since p k  and p k    we have  

Px x     

It should be carefully noted that the uncertainties in measurement of position and momentum are 

not because of inadequacies in our measuring instruments. Even with ideal instrument we can 

never in principle do better. This principle is the fundamental law of nature. The indeterminism 

is inherent in the very structure of matter. The momentum and position don’t assume well-

defined values simultaneously. 

Notice that it is the smallness of Planck‘s constant that makes the uncertainty principle 

insignificant in macroscopic world. In microscopic world the consequences of uncertainty 

principle cannot be ignored. 

2.3 Compatible and incompatible observables:  

Two observed which can be measured simultaneously and precisely without influencing each 

other are called Compatible. The operators of such observable commute i.e ˆˆ, 0P Q  
 

. On 

the other hand two observables are such that the determination of one observable introduces an 

uncertainty in the other they are called incompatible. The operators of incompatible observed do 

not commute. That is ˆˆ, 0P Q  
 

 

Assume that two physical quantities Q and R can simultaneously have definite values when the 

system is in a common state n . The wave function n  of the state in which the quantity Q has 

a value qn and the quantity R the value rn must satisfy two equation simultaneously  

ˆ

ˆ

n n n

n n n

Q q

R r

 

 




 

The product of operators is determined by the condition  

   ˆ ˆˆ ˆ
n n n n n nQR Q R q r        

Thus: 

   ˆ ˆˆ ˆ ˆ( )n n n n n n nRQ R Q R q r q       

Hence: 
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ˆ ˆˆ ˆQR RQ   

ˆ ˆˆ ˆ 0QR RQ   

Thus if two quantities can simultaneously have definite values then (i) their operators have 

common eigen functions and (ii) their operators commute. 

In general, the product of operators is non-commuting i.e., 

ˆ ˆˆ ˆQR RQ  

This can be verified taking the example of the operators  

ˆ ˆQ and R x
x


 


 

   ˆ ˆQR x x
x x


  

 
  
 

 

 ˆR̂Q x
x








 

Operators Q̂  and R̂ for which the condition  

ˆ ˆˆ ˆQR RQ  

is observed are said to be commutative operators. If this condition is not satisfied, the operators 

are said to be non-commutative. Operators, which satisfy the condition 

ˆ ˆˆ ˆQR RQ   

are called anti-commutative operators. 

2.4 Change of basis: 

We know that the matrices representing vectors and operators on the basis (representation). If the 

basis (or representation) is changed, the matrices are also changed for the same set of vectors and 

operators. Thus we have to find a relationship between matrices which represent the same set of 

vectors and operators in different representations (bases).  

Let [ ] &[ ' ]
N N

i iu u  be two orthonormal bases in a Hilbert space. Since both sets are complete, 

vectors of one set can be expanded in terms of vectors in the other set. 
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1
'

N

j k kj
k

u u s


  with  j=1,2,3……………………..N 

Skj are the expansion co-efficients, which are the matrix elements of an (N X N) matrix S which 

represents transformation from the representation [| ]iu   to [| ' ]iu   

i.e., Sij = 'i ju u  

It can be seen that † †S S I SS  and † 'S U U  

The expansion of an arbitrary vector X in terms of the basis vector is  

11

| ' | '

' '

N N

i i j j
ji

X x u x u

or Ux U x



    




 

Where x & 'x  are two column matrices representing X in representation of U& 'U respectively. 

Co ordinate representation:  

ˆ ˆ; x

d
x x p i

dx
     

Momentum representation:  

ˆˆ ; x x
x

d
x i P P

dp
   

& xP x c
{

x

i
P x

e

 
 
   

Where c = c
*
=

1

2  

  .3
32, ( ) (2 ) ( ) e

i
p r

j j
Also u p u r d r

  
  
   
  

  .3
32& ( ) (2 ) ( )e

i
p r

j j
u r u p d p

  
      
  

Thus ( )ju p and ( )ju r are Fourier transforms of each other 
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Matrix elements * 3ˆ( ) ( ) ( )jk j kA u r A r u r d r   

2.5 Let us sum up: 

Simultaneous, precise measurement of position and momentum of a quantum-mechanical 

particle is not possible according to un-certainty principle. There is always some uncertainty 

associated with the measurement of any physical quantity. We have understood the implications 

of this principle. Also, we have understood differentiation between compatible and incompatible 

observables and also the manner in which change of basis is undertaken in the field of Quantum 

mechanics.  

2.6 Key words 

 Uncertainty 

 Position 

 Momentum 

 Compatible observable 

 Incompatible observable 

 Basis  

 

2.7 Problems: 

Example 1. Show that the wavelength of electron accelerated through a potential difference V is 

given by  

12.3

( )2 V

h

V voltme
   Å 

Solution. The kinetic energy of electron T=
2

2

p
eV

m
  

And 2 2p mT meV    

Therefore 
2 2

h h h

p mT meV
     

Substituting m = 9.1x10
-31

 kg, e =1.6x10
-19

C, h = 6.6 x 10
-34

 Js, 
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we have, 

1012.3 12.3
10X m Å

V V
     

For other charged particles appropriate values of m and charged q should be substituted in the 

above equation.  

Example-2 Obtain expression for the wavelength of a particle moving with relativistic speed. 

Solution The relativistic momentum of a particle  

 
 

0

2 2

1 2
2 2

2 2 1 2

0 0

1

1(1 )

m v
p

v c

v ch h v c h

p m v m c v c






   

 

The momentum p of a relativistic particle can also be expressed as follows:  

2 2 2 2 2 2 2
0

2
0

( ) ( )

( 2 )

oE p c m c T m c

T T m c
p

c

   




 

Hence h
p

   

2 2
00 0

1 2

2
0 0

1

2( 2 ) 1 2

1
2 2

hc h

m TT T m c T m c

h T

m T m c



 
 

 
   

 

 

If the particle under consideration is an electron accelerated through a potential difference of V 

volt, its de Broglie wavelength is given by  

1
2

2
0 0

1
2 2

h eV

m eV m c
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Example-3 Find the de Broglie wavelength of (i) electron moving with velocity 1000 m/s (ii) an 

object of mass 100 gm moving with the same velocity. 

Solution (i) de Broglie wavelength of electron  

  

34
10

31

6.63 10
7285 10

9.1 10 1000

h X Js
X m

mv X kg m s






    

(ii) de Broglie wavelength of object  

  

34
366.63 10

8.63 10
0.1 1000

h X Js
X m

mv kg m s



    

Owing to extremely short wavelength of the object, its wave behavior cannot be demonstrated. 

 

Example-4 An object has a speed of 10000 m/s accurate to 0.01%. With what fundamental 

accuracy can we locate its position if the object is (a) a bullet of mass of 0.05kg (b) an electron? 

Solution momentum of bullet p = mv= (0.05kg) (1000m/s) =50kg m/s 

  Uncertainty in momentum 350 0.0001 5 10p X X kg   m/s 

Minimum uncertainty in position  

34
31

3

1.054 10
2.1 10

5 10

X Js
x X m

p X Kg m s





   




 

Momentum of electron  

P = mv = (9.1 X 10
-31

 kg)(1000 m/s)=9.1 X 10
-28

 kg m/s  

Uncertainty in momentum 

p  9.1 x 10
-28

 x 0.0001= 9.1 x 10
-32 

kg m/s  

Uncertainty in position  

34

32

1.054 10
0.115

9.1 10

X Js
x m

p X kg m s
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The uncertainty in bullet‘s position is so small that it is far beyond the possibility of measurement. Thus, 

we see that for macroscopic objects like bullet the uncertainty principle practically sets no limits to the 

measurement of conjugate dynamic variables position and momentum. For electron uncertainty in its 

position is very large, nearly 10
7
 times the dimensions of atom. Thus for microscopic objects such as 

electron the uncertainty in their position is significant and cannot be overlooked. 

Example-5 The position and momentum of 1 keV electrons are measured simultaneously. If its position 

is located within 1Å what is the percentage uncertainty in its momentum? Is this consistent with the 

binding energy of electron in atom? 

Solution The uncertainty in position of electron  

34
24

10

1.054 10
1.054 10

10

h X Js
p X kg m s

x m





   


 

The momentum of electron inside the atom is at least equal to p=1.054x 10
-24

 kg m/s the corresponding 

kinetic energy is  

2 24 2
17

31

(1.054 10 )
0.061 10 3.8

2 2 9.1 10

p X kg m s
T X J eV

m X X kg





     

The ionization potential of atoms is of this order and hence the uncertainty in momentum is consistence 

with the binding energy of electrons in atoms. 

2.8 Questions for self study 

1. Write a note on Heisenberg‘s uncertainty principle. 

2. List out various uncertainty relations that are encountered.  

3. State and prove Heisenberg‘s uncertainty principle.  

4. Distinguish between compatible and incompatible observables. 

5. Describe the formalism of change of basis.  

 

2.9 References for further study 

1. Griffiths D.J., Introduction to electrodynamics, 5th edn., prentice-hall of India, New Delhi, 2006. 

2. Sakurai JJ. And Tuan S.F. (editor), Modern quantum mechanics, addison wesley, India, 1999. 

3. Shankar R., Principles of quantum mechanics, 2nd edn., Plenum press, New Delhi, 1984. 

4. L.I.Schiff, Quantum mechanics 3rd. Edn. McGraw-Hill Kogakusha Ltd. New Delhi 1968. 

5. E.Merzbacher, Quantum mechanics, John Wiley, New York 

6. Richtmyer, Kennard and Lauritsen, Introduction to Modern Physics 

7. Introduction to Modern Physics by R.B.Singh, Vol1, 2nd Edn. 
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UNIT 3: Position, momentum and translation. Momentum as generator of translations. The 

canonical commutation relations, wave functions in position and momentum space.   

Structure: 

3.0 Objectives 

3.1 Introduction 

3.2 Commutator 

3.3 Commutation relations 

3.4 wave functions in position and momentum space 

3.5 Let us sum up 

3.6 Key words 

3.7 Questions for self study 

3.8 Problems 

3.9 References for further study 

 

3.0 Objectives:  

After studying this unit you will be able to understand the following aspects; 

 Position, Momentum and Translation.  

 Momentum as generator of translations.  

 The canonical commutation relations.  

 Wave functions in position and momentum space.  

3.1 Introduction: 

Momentum operator:  

In quantum mechanics, momentum (like all other physical variables) is defined as an operator, 

which "acts on" or pre-multiplies the wave function ψ(r, t ) to extract the momentum eigenvalue 

from the wavefunction: the momentum vector a particle would have when measured in an 

experiment. The momentum operator is an example of a differential operator. 

At the time quantum mechanics was developed in the 1920s, the momentum operator was found 

by many theoretical physicists, including Neil‘s Bohr, Arnold Sommerfeld, Erwin Schrödinger, 

and Eugene Wigner. 
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Origin from De Broglie plane waves 

The momentum and energy operators can be constructed in the following way.  

In One dimension: 

Starting in one dimension, using the plane wave solution to Schrödinger's equation: 

 i kx t
e





  Starting in one dimension using the plane wave solution to Schrödinger's equation: 

The first order partial derivative with respect to space is  

( )i kx tike ik
x




 


 

By expressing k from the de-Broglie relation: p k        

The formula for the derivative of ψ becomes: 
p

i
x







 
          

This suggests the operator equivalence:     p̂ i
x


 


                

Hence the momentum value p is a scalar factor, the momentum of the particle and the value that 

is measured, is the eigenvalue of the operator. Since the partial derivative is a linear operator, the 

momentum operator is also linear, and because any wavefunction can be expressed as a 

superposition of other states, when this momentum operator acts on the entire superimposed 

wave, it yields the momentum eigenvalues for each plane wave component, the momenta add to 

the total momentum of the superimposed wave. 

In three dimensions:                                                                                                                            

The derivation in three dimensions is the same, except the gradient operator Del is used instead 

of one partial derivative. In three dimensions, the plane wave solution to Schrödinger's equation 

is:  
( . )i k r te  
 

 

and the gradient is  
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ˆ

x y z

x x y y z z

x x y y z z

e e e
x y z

ik e ik e ik e

i
p e p e p e

i
p

  


  





  
   

  

  

  







 

where , ,x y ze e e   are the unit vectors for the three spatial dimensions, hence  

p̂ i    

This momentum operator is in position space because the partial derivatives were taken with 

respect to the spatial variables.  

Definition (position space) 

For a single particle with no electric charge and no spin, the momentum operator can be written 

in the position basis as:   

p̂ i    

where ∇ is the gradient operator, ħ is the reduced Planck constant, and i is the imaginary unit. 

In one spatial dimension this becomes:     

ˆ ˆ xp p i
x


  


  

This is a commonly encountered form of the momentum operator, though not the most general 

one. For a charged particle q in an electromagnetic field, described by the scalar potential φ and 

vector potential A, the momentum operator must be replaced by:  

p̂ i qA  


  

Where the canonical momentum operator is the above momentum operator:   
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p̂ i    

This is of course true for electrically neutral particles also, since the second term vanishes if q is 

zero and the original operator appears. 

Fourier transform 

One can show that the Fourier transform of the momentum in quantum mechanics is the position 

operator. The Fourier transform turns the momentum-basis into the position-basis. The following 

discussion uses the Bra-ket notation: 

ˆ| | ( )
d

x p i x
dx

     

The same applies for the Position operator in the momentum basis: 

ˆ| | ( )
d

p x i p
dp

    

and other useful relations:         

ˆ| | ( )

ˆ| | ( )

d
p x p i p p

dp

d
x p x i x x

dx





  

   





    

where stands for Dirac's delta function. 

 

Derivation from infinitesimal translations 

The translation operator is denoted by T(ε), where ε represents the length of the translation. It 

satisfies the following identity:    
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which becomes         

| |

T dxT x x

dx x x dx x x

   

    



     



 

 

Assuming the function ψ to be analytic (i.e., differentiable in some domain of the complex 

plane), one may expand in a Taylor series about x: 

  ( )
d

x x
dx


       

Thus for infinitesimal values of ε:  

( ) 1 1
d i d

T i
dx dx


  

 
     

 



 

As it is known from classical mechanics, the momentum is the generator of translation, so the 

relation between translation and momentum operators is: 

  ˆ1

ˆ

i
T p

Thus

d
p i

dx

  

 





 

3.2 COMMUTATOR: 

The operator ˆ ˆˆ ˆQR RQ formed from the operators ˆ ˆQ and R is called the ‗commutator of the 

given operators‘ and is designated by the symbol ˆ ˆ,Q R 
 

i.e  

The commutator of commuting operator is zero.  

 

3.3 Commutation relation:  

Linear operators obey following commutations rules: 
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ˆ ˆˆ ˆ, ,

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , ,

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , ,

A B B A

A BC A B C B A C

AB C A C B A B C

    
   

      
     

      
     

  

Some commutation relations of quantum mechanical operators: 

     

 

 

   

 

ˆ ˆ ˆ ˆˆ ˆ1. , , , 0

ˆ ˆ ˆˆ ˆ ˆ, 0

ˆ ˆ ˆ ˆ ˆˆ2. , , ,

( )
ˆ ˆ ˆˆ ˆ ˆ,

ˆ ˆ ˆ ˆ ˆˆ3. , , , 0

ˆ ˆ ˆˆ ˆ,

x y y

x x x

x y y

y y y

x y y z z x

x y xy yx xy yx

x p y p z p i

x
x p xp p x i x

x x

i x x i
x x

x p y p z p

x p xp p

 
 

 
 



  

    

        

  
     

  

  
     

  

        

    





 

 

 

   
2

( )
ˆ 0

ˆ ˆ ˆ ˆ ˆ ˆ4. , , , 0

ˆ ˆ ˆ ˆ ˆ ˆ, 0

x y y z z x

x y x y y x

x
x i x

y y

p p p p p p

p p p p p p i
x y y x

 


 
 

  
    

  

        

    
              




 

 
2 2 2 2

2 2

3 3 3

3 3

ˆ ˆ5. , 0

ˆ ˆ ˆˆ ˆ ˆ,

2 2

0
2

H p

H p Hp pH

d d
i i

m x x mdx dx

i
m x x

 



 

  
 

   
 

       
                   

  
      

 
 



 

 

ˆ ˆ ˆˆ ˆ ˆ6. , 0, , 0, , 0

ˆ ˆ ˆˆ ˆ ˆ,

x y z

x x x

L x L y L z

L x L x xL i y z x x y z
z y z y

   

       
     

       
                     


 

Inspection of above formulas shows that a component of the angular momentum and the         
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corresponding coordinate can have simultaneously definite values.                                           

 

2 2

ˆ ˆ ˆˆ ˆˆ7. , , , , ,

ˆ ˆ ˆˆ ˆ ˆ,

x y z

x x x

L y i z L z i x L x i y

L y L y yL

i y z y y y z
z y z y

i y zy z y yz
z y z y

i z

 

 

   




       
     

   
 

       
        

       

    
      

    



  







 

Inspection of these formulas shows that the component Lx and the coordinate y (or z) cannot be 

determined simultaneously. The same holds for Ly and the coordinate z (or x) and also for Lz and 

the coordinate x (or y).  

 

 
2

ˆ ˆ8. , 0

ˆ ˆ ˆˆ ˆ ˆ,

0

x x

x x x x x x

L p similar results hold for other similar commutators

L p L p p L

i y z y z
z y x x z y

 

  

  
 

   
 

         
          

         


 

 

2

2 2 2 2
2

2 2

ˆ ˆ ˆ9. ,

ˆ ˆ ˆˆ ˆ ˆ,

( )

( )

x y z

x y x y y x

L p i p similar results hold for other components

L p L p p L

i y z y z
z y y y z y

i y z y z
y z z y zy y

 

  

    

  
 

   
 

         
        

         

      
      

       





  

2( )

ˆ z

i
z

i i
z

i p







 
   

 

 
  

 





 



 



 
 
 
Course MP 2.2  Block 2.2A KSOU 

41 
 

   

, ,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ10. , , ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆˆˆ ˆ,

ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆˆˆ ˆ

x y z y z x z x y

x y x y y x x x z x z x

x x x z x x z x

L L i L L L i L L L i L

L L L L L L L zp xp zp xp L

L zp L xp zp L xp L

       
     

       
 

   

  

 

Since ˆ
xL commutes both with x̂  and ˆ xp we can interchange the operators ˆ

xL  and x̂  in the 

second term and also the operators ˆ xp and ˆ
xL  in the third term. The result is  

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆˆ ˆ,x y x x x z x x z xL L L zp xL p zL p xp L     
 

 

Let us combine the first term with the third one and the second term with the fourth one  

   
   

 

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ,

ˆ ˆ ˆ

ˆ ˆ ˆˆ

ˆ

x y x x x x z z x

x y

x y

z

L L L z zL p x L p p L

i y p x i p

i yp xp

i L

     
 

 

 



 





 

By carrying out two successive cyclic permutation on ˆ ˆ,x yL L 
 

= ˆ
zi L We can get the remaining 

two results. 

 

   

2 2 2

2 2 2 2 2 2 2

3 2 2 3 2 2

ˆ ˆ ˆ ˆ ˆ ˆ11. , 0, , 0, , 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

x y z

x x y z x x x y z

x y x z x x x y x z

L L L L L L

L L L L L L L L L L

L L L L L L L L L L

       
     

       
 

     

 

Using the commutation relation ˆ ˆ ˆ ˆ ˆ
x y y x zL L L L i L   we can transform the second and fifth term 

as follows  

   

 

2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

y x x y y y x x y y

y x y z y x z y

y z z y

L L L L L L L L L L

L L L i L L L i L L

i L L L L
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Using the relation ˆ ˆ ˆ ˆ ˆ
z x x z yL L L L i L   we can perform a similar transformation of the third and 

sixth terms.  

   

 

2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

z x x z z z x x z z

z x z y z x y y

z y y z

L L L L L L L L L L

L L L i L L L i L L

i L L L L

  

   

  

 



 

Making use of these transformations we get  

2ˆ ˆ, 0xL L  
 

 

We conclude that only the square of the vector L and one of its projections onto the coordinate 

axes can be determined simultaneously. The other two projections are indeterminate (except 

when all three components are zero). Consequently, all that we can know about the vector L is its 

―length‖ and the angle it makes with a certain axis. The direction of the vector L, however, does 

not lend itself to determination. The operators, which commute, can have simultaneous eigen 

states.  

3.4 The Position and Momentum Representations 

In this section we revert to the space f  of the wave functions of a particle. To every wave 

function  r


we corresponds a ket   belongs to the space r . This correspondence is linear 

and the scalar product of two kets coincides with that of the corresponding wave function  

* 3( ) ( ) (1)r r d r    
 

 

r can thus be regarded as the space of the states of a particle. We now proceed to study two 

particularly important representations in this space called the position and momentum 

representations. 

(a) Definition  

We know that two bases in the space f :    
0 0
( ) ( )r pr and v r
 

. These bases do not consist of the 

functions belonging to the space f : 
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0

0

0

0

.
3 2 ( /2 )

( )

( ) 2 ( / 2 )

r

i
p r

h
p

r r r

v r h e 

 

 


 



 

  


 

However any function of the space f  can be expanded in either of the bases. We therefore 

associate a ket to each of the function of these bases  

0

0

0

0

( )

( )

r

p

r r

v r p

 



 

   

With respect to these bases    
0 0
( ) ( )r pr and v r
 

of f , we define two representation in 
0

r the 

position representation 0r


 and the momentum representation 0p


. A basis vector of the first of this 

representation is characterized by three continuous indices x0, y0, and z0 which are simply the co ordinates 

of a point in the three dimensional space. For the second representation the three indices are components 

of an ordinary vector    

(b) Orthonormality Relation  

Let us consider 0 0r r
 

According to the definition of the scalar product in r we have  

   
0 0

3
0 0 0 0( ) (2)r rr r r r d r r r      
     

 

Similarly  

   
0 0

3
0 0 0 0( ) (3)r rp p v r v r d r p p    
     

 

The bases that we have just defined can be regarded as orthonormal in a large sense.  

(c) Closure Relation 

The fact that set  0r


 or 0p


 constitutes a base in r  can be expressed by an appropriate closure 

relation. this can be written in the same way as where we now do the summation over three 

indices. we thus have the following fundamental relation. 

(i) 3
0 0 0r r d r I
 

 

(ii) 3
0 0 0 3( )p p d p I a
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(d) Components of Ket  

Let us consider any ket   corresponding to the wave function ( )r


. The closure 

relation given above enables us to write it in one of the two forms:  

3
0 0 0

3
0 0 0

r r d r

p p d p

 

 



 





 

   

We can calculate the co efficients  

0

0

* 3
0

* 3
0

( ) ( )

( ) ( )

r

p

r r r d r

p v r r d r

  

 









  

    

We thus find that  

0 0

0 0

( )
(4)

( )

r r

p p

 

 

 


 

 

   

Where ( )p


is the Fourier transformation of ( )r


 

The value 0( )r


of the wave function at the point 0r


thus out to be the component of the 

ket   along the basis vector 0r


of the position representation  0r


.The wave 

function (in the momentum space) ( )p


can be similar interpreted.  

For  = 0p


,
 the relation (4) gives  

    0 0

1
.3 /22

0 0 0( ) 2 ( / 2 )
o

p r
h

pr p v r h e


 


 

 
  

 

For 0r 


the result is quite in agreement with the Orthonormality relation  

0
0 0 0 0 0( ) ( )rr r r r r    
    

 

Now that we have again interpreted the wave function ( )r


 and its Fourier transform ( )p


we 

shall write r


and p


in place of 0r


and 0p


, for the basis vectors of the two representations under 

study. Nevertheless r


and p


are here always considered as the two sets of continuous indices 

{x,y,z} and {px,py,pz} respectively. 



 
 
 
Course MP 2.2  Block 2.2A KSOU 

45 
 

Note: – Let us consider an orthonormal base  ( )u r


in the space f. To very ( )u r


we associate a ket 

iu  of the space r The set  ( )u r


constitutes an orthonormal base in r  it therefore satisfies the 

closure relation  

(5)i iu u I                   

Let us take the matrix elements on both sides of (5) between r and r
 

 

*

/

(2) (4),

( ) ( ) ( )

i i

i

i i

i

r u u r r I r r r

From and this equationbecomes

u r u r r r

   

  





     

   
 

The closure relation in the base  ( )iu r


is thus simply another form, in the representation  r


of 

the vectorial closure relation (5)  

(e) Scalar Product of Two Vectors   

We have defined the scalar product of two ket of r as the same for the corresponding wave 

functions in f. It can be seen that is reproduced if we substitute the closure relation between 

and  : 

3r r d r    
 

 

And substitute (5) for the components r and r 
 

 

If we use the momentum representation  ,p


we obtain an important relation of the Fourier 

transformations: 

3

* 3( ) ( ) (6)

p p d r

p p d p

   

 









 

   

(f) Change from a Representation   r


to a Representation  p


 

A change from one representation to another involves the numbers: 

* 3 2 .(2 ) (7)i p rr p p r e  
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A given ket   is represented by  ( ) ( )r r inthe representation r and by p p    
    

in 

the representation.  p


. From the formulae we already know that ( ) ( )r and p 
 

are related by 

the Fourier transformation It is form this that we got our formulae for a change of representation. 

3

3

3

. ( )
3 2

3

. ( )
3 2

( ) (2 )

( ) (2 )

i
p r p d p

i
p r r d r

r r p p d p

or

r e

Inversely

p p r r d r

or

p e





 

 

 

 





















  



  



   




   




 

We can easily change the matrix elements  

ˆ | ( , )r A r A r r 
   

 

of an operator Â  in the representation  r


to the matrix elements  

 

( . . )
3 3 3

ˆ | ( , )

( , ) (2 ) ( , )

exp ( , ) ( , )

i
p r p r

p A p A p p

of the sameoperator inthe represenation p

A p p d r e A r r d r

Asimilar ression givesus thechange from A p p to A r r


 



 

  

 

 
   



   



   


   

 

(g) The Operators ˆ ˆR and P  

Let   by any ket of ( ) ( , , )r and r r x y z    
 

the corresponding wave function. By 

definition of the operator X̂ : 

X̂    

The ket   is represented in the base  r


the operator X̂ coincides with the operator of 

multiplication with x. Although we characterize X̂  as an operator transforming the wave 
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functions, it is very much an operator acting in the space r . In the same way, we introduce two 

more operators ˆ ˆY and Z . We thus define the three operators X̂ , ˆ ˆY and Z  by the formula  

ˆ |

ˆ | .....(8)

ˆ |

r X x r

r Y y r

r Z z r

 

 

 





 




 

 

 

 

where the numbers x,y,z are precisely the three indices for the ket ˆ ˆ ˆ. ,r X Y and Z


will be 

considered as the ―components‖ of a ―vector operator‖ R̂ . 

The operators ˆ ˆ ˆ, ,X Y Z can be very conveniently employed in the representation  r


. For 

example to calculate the matrix elements ˆ |X  all that we have to do is to insert the closure 

relation between ˆand X and use the formulae  

In the same way we can define the vector operator P̂ by its components Px.Py,Pz whose action in 

the representation  p


 is given by  

ˆ |

ˆ |

ˆ | (9)

x x

y y

z z

p P P p

P p P p

P P P p

 

 

 





              

 

 

 

 

Where Px.Py,Pz  are the three indices for the ket p


. 

Let us now see how the operator P̂ acts in the representation r


. All that we have now to do is 

to use the closure relation 3(a) and the matrix for the change of base (7) 

3

.
3 2 3

| |

(2 ) ( ) (10)

x x

i
p r

x

r P r p p p d p

e p p d p

 

 



  




 



    




 

We have recognized the Fourier transformation of ( ) , . ., ( )xp p i e i r
x

 





 
 according to the 

properties of the Fourier transformation). Thus,  

|xr P i r   
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In the representation  r


the operator P̂  coincides with the differential operator i  applied 

to the wave functions. In the representation  r


the calculation of a matrix elements such as 

|xP 


 can be done as follows  

3

* 3

| |

( ) ( )

x xP r r P d r

r i r d r
x

   

 



 
   





  

 


 

We can also calculate the commutation between the operators ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,x y zX Y Z P P P  in the 

representation  r


for example   and for all kets of the base r


we conclude that 

 ˆ ˆ ˆ ˆ ˆ ˆ, | |

ˆ ˆ| |

x x x

x

r X P r XP P X

x r P i r X
x

i x r i x r
x x

i r

 

 

 



   
 


 



 
  

 



 

 


 
 




 

As this calculation is valid for any ket   and for all kets of the base r


 we conclude that  

ˆ ˆ, (11)xX P i  
 

  

In the same way we can find all other commutation relations between the components of 

ˆ ˆR and P We give these results here  

,

,

,

ˆ ˆ 0

ˆ ˆ 0 (12)

ˆ ˆ

i j

i j

i j ij

R R

P P

R R i 

  
  

       


  
  



 

1 2 3 1 2, 3 ,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, 1,2,3 , , & , , , ,x y zwherei j and R R R P P P denote respectively X Y Z and P P P  

(h) Operator R̂ and functions of R̂ in  r


 

Let us calculate the matrix elements of the operator ˆ ˆ ˆ, ,X Y Z in the representation  r


. Using 

the Orthonormality relation (2), we get atonce: 
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ˆ( | | ( )

ˆ( | | ( ) (13)

ˆ( | | ( )

r X r x r r

r Y r y r r

r Z r z r r







   


     


    

   

   

     

These three equations can be combined into a single equation: 

ˆ( | | ( ) (14)r R r r r r   
    

 

The matrix elements of a function R̂ can also be similarly written as: 

   ˆ( | | ( )r F R r F r r r   
    

 

(i) Operator P̂ and Function of P̂ in r


 

Let us calculate the matrix elements ˆ| |xr P r 
 

 

3

3

.( )
3 3

( )

( )

( )

ˆ ˆ( | | | |

(2 )

1

2

1

2

1
(15)

2

x

y

z

x x

x

i
p r r

x

i
p x x

x x

i
p y y

y

i
p z z

z

r P r r P r p r d p

p r p p r d p

p e d p

p e dp

e dp

e dp
























     





 
  
 
 

 
 
 
 

 
     
 
 













  









     

   









 

If we now use the integral form of the ―delta function‖ and its derivatives we get  

ˆ| | ( 2 ) ( ) ( ) ( ) (16)xr P r i h x x y y z z            
 

 

The matrix elements of the other components of P̂  can be obtained in the same way.  

We can also calculate the matrix elements of a function ˆ( )G P of the operator P̂ : 
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3

.( )
3 3

3 2

ˆ ˆ ˆ| ( ) | | ( ) |

(2 ) ( )

(2 ) (17)

i
p r r

r G P r r G P P P r d p

G P e d p

G r r










     



   




  



   




 


 

where ( )G r
 is the Fourier transform of the function ( )G P


: 

 
3. ( )3 2

( ) 2

i
p r G p d p

G r e


 
 


  

(j) Schrodinger’s equation in Representation   r


 

We have deduced Schrodinger‘s equation in the form  

  ˆ2i h H
t


 





 

Using the representation of state vectors we can write this equation in the form   

  ˆ2 ( ) | (18)
d

i h t H
dt

     

We will now show that in the representation r


, it has the same form.  In the 

representation  r


 the wave function  ,r t


is defined by  

 , ( )r t r t 
 

 

For a spinless particle in the potential ( ),V r


the Hamiltonian has the form  

21ˆ ˆˆ ( ) (19)
2

H p V R
m

   

Projecting (18) on r


we get : 
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  21 ˆ ˆ/ 2 ( ) | ( ) | ( ) ( )
2

( ) ( , )

ˆ| ( ) ( ) ( ) ( , )

i h r t r P t r V R t
t m

We know that

r t r t
t t

r V R t V r r t

   

 

 


 



 


 



  

 

  

 

The matrix element 2ˆ|r P 


can be calculated using the representation  r


 with P̂

acting as i   

 2 2 2 2

2 2 2
2

2 2 2

2 2

2
2

ˆ ˆ ˆ ˆ| ( ) | ( )

( , , , )

( , ) (20)

( , ) ( ) ( , ) (21)
2

x y zr P t r p p p t

x y z t
x y z

r t

The schrodinger equationthus becomes

i r t v r r t
t m

 





 

  

   
        

  

 
    

   

 






  


 

(k)  Operator P̂ and function of P̂   p


 

As in section h above, we obtain the following corresponding relations: 

 

ˆ| | ( )

ˆ| | ( ) ( )

p p p p p p

p G p p G p p p





    

    

    

      

(l) Operator R̂ and function of R̂ in  p


 

Following the arguments of section i above, we obtain the following corresponding relation 

3 2

ˆ| | ( ) ( ) ( )

ˆ| ( ) | (2 ) ( )

x x y y z zp X p i p p p p p p

and

p F R p F p p

with

  

 

         

    

 


   


 

.
3 2 3( ) (2 ) ( )

i
p r

F p e F r d r
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(m)Schrodinger’s equation in Representation   p


 

Let us introduce the wave function in representation  p


as: 

( , ) ( )p t p t 


 

We then use equation (18) to look for an equation which gives the time evolution of 

( , )p t


projecting (18) on the ket p


 we get:  

21 ˆˆ( ) | ( ) | ( ) ( )
2

i p t p p t p V R t
t m

  


 


  
  

For the three members of this equation we have: 

2 2

( ) ( , )

ˆ| | ( ) ( , )

p t p t
t t

p p t p p t

 

 

 


 

  

 

    

The matrix element ˆ| ( ) | ( )p V R t 


 can be calculated as follows  

 

3

3 2 3

.
3 2 3

ˆ ˆ| ( ) | ( ) | ( ) | ( )

ˆ| ( ) | ( ) (2 ) ( ) ( , )

( ) ( )

( ) (2 ) ( )

i
p r

p V R t p V R p p t d p

p V R t V p p p t d r

whereV p is the Fourier transformof V r

V p e V r d r

The schrodinger equationin representation p thus

 

  








      

    








 



   

  


 

 




2
3 2 3( , ) ( , ) (2 ) ( ) ( , )

2

is

p
i p t p t V p p p t d p

t m
   

    
 


   

 

 

3.5 Let us sum up 

 In this section we have understood about commutator, properties of commutators and few 

important commutation relations. Also, we were able to see how wave functions look like in 

position space and momentum space. 

  

3.6 Key words 

Commutator ,Commutation relation, Wave function, Position space, Momentum space 
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3.7 Questions for self study 

 Discuss the properties of commutators used in Quantum mechanics with examples.  

 Discuss five commutation relations used in Quantum mechanics.  

 Write the wave function in position space and momentum space.  

 

3.8 Problems 

Examples 2.20  

Suppose   
1

( )x for a x a
a

      Find the momentum space wave function ( )p  

SOLUTION  

 

 
 

/

/

/

/

/ /

1
( ) ( )

2

1 1

2

1

2

1
|

2

1 2

22

sin2 2
sin

ipx

a
ipx

a

a
ipx

a

ipx a
a

ipa ipa

p x e dx

e dx
a

e dx
a

e
ip

e e

p ia

paa a
c pa

pa
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UNIT 4: 

 Momentum operator in position eigen values and eigen functions, Gaussian wave packets. 

 

Structure: 

4.0 Objectives 

4.1 Introduction 

4.1.1 Quantum Particles  

4.1.2 Wave Packets  

4.1.3 Evolution of Wave Packets 

4.2 Momentum Operator in Position space: 

4.2.1. Definition (Position space)  

4.2.2 Description of Quantum Particle: Wave Packets 

4.2.3 Form of the Wave Packets at a given instant 

4.2.4Time Dependence of a Free Wave Packet 

4.3 Let us sum up 

4.4 Key words 

4.5 Questions for self study 

4.6 Problems 

4.7 References for further study 
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4.0 Objectives 

After studying this unit you will be able to understand the following aspects; 

What is a wave packet? What is the mathematical description of the wave packet? What is the 

significance of the study of these wave packets? What is their role in quantum mechanics?  

 

4.1 Introduction 

4.1.1 Quantum Particles  

 Just as light waves sometimes exhibits particle-like properties, it turns out that massive 

particles sometimes exhibit wave-like properties. For instance it is possible to obtain a double-

slit interference pattern from a stream of mono-energetic electrons passing through two closely 

spaced narrow slits. Now the effective wavelength of the electrons can be determined by 

measuring the width of the light and dark bands in the interference pattern it is found that  

(1)
h

p
   

The same relation is found for the other types of particles. The above wavelength is called the de 

Broglie wavelength, after Louis de Broglie who first suggested that particles should have wave-

like properties in 1923. Note that the de Broglie wavelength is generally pretty small for instance 

that of an electron is  

 
1 291.2 10 ( ) (2)e E eV m
   

where the electron energy is conveniently measured in units of electron- volts (eV). (An electron 

accelerated from rest through a potential difference of 1000V acquire an energy of 1000 eV and 

so on) The de Broglie wavelength of proton is  

 
1 2111.9 10 ( ) (3)p E eV m
   

Given the smallness of the de Broglie wavelengths of common particles it is actually quite 

different to do particle interference experiments. In general in order to perform an effective 

interference experiment, the spacing of the slits must not be too much greater than the 

wavelength of the wave. Hence particle interference experiments require either very low energy 

particles (since 1 2E  ) or very closely spaced slits. Usually the ―slits‖ consist of crystals, 

which act a bit like diffraction grating with a characteristic spacing of order the inter-atomic 

spacing (which is generally about 10
-9

 m). 

Equation (1) can be rearranged to give  
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(4)p k   

For the case of a particle moving the three dimensions the above relation generalize to give  

(5)p k

  

Where p


 is the particles vector momentum and k


 its wave vector. It follows that the momentum 

of a quantum particle and hence its velocity is always parallel to its wave vector.  

Then, the expression for energy can be derived as:  

, (6)E    

For particle waves, the dispersion relation is: then yield the following dispersion relation for such 

waves: 

2

(7)
2

k

m
 


 

Now we saw earlier that a plane wave propagates at the so called phase velocity  

pv
k


  

However according to the above dispersion relation a particle plane wave propagates at  

2
p

p
v

m
  

This is only half of the classical particle velocity. Does this imply that the dispersion relation (7) 

is incorrect? Let us investigate further. 

4.1.2 Wave Packets  

The above discussion suggests that the wavefunction of massive particle of momentum p and 

energy E, moving in the positive x-direction can be written  

   
, (8)

i kx t
x t e


 


  

0 0wherek p and E where and k      are linked via the dispersion relation (7). 

Expression (8) represents a plane wave whose maxima and minima propagate in the positive x-

direction with the phase velocity pv k . As we have seen this phase velocity is only half of 

the classical velocity of a massive particle.  
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From before the most reasonable physical interpretation of a wavelength is that  
2

,x t is 

proportional to the probability density of finding the particle at position x at time t. However the 

modulus squared of the wavefunction (8) is
2

 , which depends on neither x nor t. In other 

words this wave function represents a particle which is equally like to be found anywhere on the 

x-axis at all times. Hence the fact that maxima and minima of the wave function propagates at a 

phase velocity which does not correspond to the classical particle velocity does not have any real 

physical consequences.  

So how can we write the wave function of a particle which is localized in x: i.e a particle which 

is more likely to be found at some positions on the x-axis than at others? It turns out that we can 

achieve this goal by forming a linear combination of plane waves of different wave numbers. 

     
, . (9)

i kx t
x t k e dk


 






   

Here  k represents the complex amplitude of plane waves of wave number k in this 

combination. In writing the above expression, we are relaying on the assumption that particle 

waves are superposable: i.e., it is possible to add two valid wave solutions to form a third valid 

wave solution. The ultimate justification for this assumption is that particle waves satisfy a 

different wave equation which is linear in. This is indeed the case. Incidentally a plane wave 

which varies as exp [i(kx-t)] and has negative k (but positive ) propagates in the negative x-

direction at the phase velocity / k . Hence the superposition (9) includes both forward and 

backward propagating waves. 

Now there is useful mathematical theorem known as Fourier‘s theorem which states that if  

1
( ) ( ) ,

2

1
( ) ( ) ,

2

ikx

ikx

f x f k e dk

then

f k f x e dx






















 

Here ( )f k  is known as the Fourier transformation of the function f(x). We can use Fourier‘s 

theorem to find the k-space function  k which generates any given x-space wave function 

 x at a given time. 

For instance suppose that at t = 0 the wave function of our particle takes the form  
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2
0

0 2

2
2 0

2

( ,0) exp (10)
4

int

,0 exp (11)
2

x x
x ik x

x

Thus the ial probability density of the particleis written

x x
x

x





 
  
  

 
  
  

 

This particular probability distribution is called a Gaussian distribution and is plotted in Fig 4.1. 

It can be seen that a measurement of the particle‘s position is most likely to yield the value x0, 

and very unlikely to yield a value which differs from x0 by more than 3x. Thus eqn (11) is the 

wave function of a particle which is initially localized around x=x0 in  

 

Fig 4.1: A Gaussian probability distribution in x-space 

some region whose width is of order x. This type of wave function is known as a wave packet. 

Now , according to Eq (9) 

 

   

( ,0) .

' exp

,0

(11)

ikx

ikx

x k e dk

Hence wecanemploy Fourier s theoremtoinvert this ressionto give

k x e

Making useof equation weobtain
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Where 0 / 2.y i  The integral now just reduces to a number as can easily be seen by making 

the change of variables 0z y y  Hence we obtain  

 

 

2
0

2
( ) exp , (12)

4

1

2

o

k k
k i k x

k

where

k
x


 
   
  

 


 

Now if 
2

( )x is proportional to the probability density of a measurement of the particle‘s 

position yielding the value x then it stands to reason that 
2

( )k is proportional to the probability 

density of a measurement of a particle‘s wave number yielding the value k. (Recall that ,p k 

so a measurement of a particle‘s wave number k is equivalent to a measurement of the particle‘s 

momentum p) According to Equation (12)  

 
 

 

2
2 0

2
exp (13)

2

k k
k

k


 
  
  

 

Note that this probability distribution is a Gaussian in k-space. See equation (11) and Fig 4.1. 

Hence a measurement of k is most likely to yield the value k0 and very unlikely to yield a value 

which differs from k0 by more than 3k. incidentally a Gaussian is the only mathematical 

function in x-space which has the same form as its Fourier transformation in K-space. 

    
 

 
0 0

0

2
0

0 0 2

0

2

0

( ) exp .
4

var int ( ) / (2 ),

( ) exp ,

2( ) .

i k k x

ikx

x x
k e i k k x x dx

x

Changing the iableof egrationto y x x x this reduces to

k e i y y dy

where k k x The aboveequationcanbe rearranged to give



 



 








 
     
  

  

   
 

  





2 2

0 0
/4 ( )

( )
ikx y y

k e e dy
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We have just that Gaussian probability distribution of characteristic width x in x-space [see Eq 

(11)] transforms to Gaussian probability distribution of characteristic width k in k-space [see 

Eq- (13)]  

Where  

1
(14)

2
x k    

This illustrates an important property of wave packets. Namely if we wish to contribute a packet 

which is much localized in x-space (i.e., if x is small) then we need to combine plane waves 

with a very wide range of different k-values (i.e., k will be large). Conversely if we only 

combine plane waves whose wave numbers differ by a small amount (i.e., if k is small) then the 

resulting wave packet will be very extended in x-space (i.e., x will be large) 

4.1.3 Evolution of Wave Packets 

We have seen in Equation in Eq    ( 10 ) , how to write the wave function of a practice which is 

initially localized in x-space. But how does this wave function evolve in time? Well, according 

to Eq(8 ) we have  

    ( ), (15)i kx t k e dk 




   

where  

( ) ( ) . (16)k kx k t    

The function ( )k is obtained by Fourier transforming the wave function at t=0. Now according 

to Eqn (13), ( )k  is strongly peaked around k=k0. Thus it is a responsible approximation to 

Taylor expand (k) about k0. Keeping terms up to second order in k-k0 we obtain  

   
2

0 0 0 0 0

0 0 0 0

0
0

1
( , ) ( )exp (17)

2

( ) ,

( )
g

x t k i k k k k

where

k k x t

d k
x v t

dk
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2
0

0 2

0 0

0

2
0

2

( )

( )

( )

( )
(18)

g

d k
t

dk

with

k

d k
v

dk

d k

dk


 

 






   







 

Substituting from Equation (12) rearranging and then changing the variable of integration to 

0( ) / (2 )y k k k   we get  

  2
0 1 2

(1 )

1 0

2
2

( , ) ,

2 ( )

2 ( ) ,

o
i k x t i y i y

g

x t e e dy

where

k x x v t

k t

  



 


  





   

 



 

Incidentally k=1/(2x), where x is the initial width of the wave packet. The above expression 

can be rearranged to give  

   

 

 

2 2
0 2 2 0

1 4 (1 )( )

0 1 2

1 2
2 0

2 2 2
0 0 0

2

( , ) ,

/ 2 / 1 . var int

(1 ) ( )

exp ( ) ( ) 1 2 ( ) / (4 )

( , )

1 2 ( )

o
i k x t i i y y

g

x t e e dy

where y i and i Againchanging the iableof egration to

z i y y

i k x t x x v t i k t

x t

i k t

   

   



  






     





  

  

      
  



  




1 2

2 2
2 2

2

(19)

( ) ( ) (20)
4( )

where

t
t x

x
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Note that the above wave function is identical to our original wave function at t=0 This justifies 

the approximation which we made earlier by Taylor expanding the phase factor (k) about k=k0. 

According to Eq (10), the probability of our particle as a function of time is written  

2
2 01

2

( )
( , ) ( )exp

2 ( )

gx x v t
x t t

t
 




  
  
  

 

Hence the probability distribution is a Gaussian of characteristic width σ which peaks at

0 gx x v t  . Now the most likely position of our particle coincides with the peak of the 

distribution function, thus the particle‘s most likely position is given by  

0 gx x v t   

It can be seen that the particle effectively moves at the uniform velocity 

g

d
v

dk


  

which is known as the group velocity. In other words a plane wave travels at the phase velocity 

/pv k , where as  a wave packet travels at the group velocity gv d dt Now it follows 

from the dispersion relation for particle waves that  

g

p
v

m
  

However it can be seen from Equation   that this is identical to the classical particle velocity. 

Hence the dispersion relation     turns out to be consistent with classical physical after all as soon 

as we realize that individual particles must be identified with wave packets rather than plane 

waves. In fact a plane wave is usually interpreted as a continuous stream of particles propagating 

in the same direction as the wave  

According to equation (20) the width of our wave packet grows as time progresses. Indeed it 

follows from equation (7) and (18) that characteristic time for a wave packet of original width x 

to double in spatial extent is  

2

2

( )m x
t
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For instance if an electron is originally localized in a region of atomic scale (i.e., x=10
-10

 m) 

then the doubling time is only about 10
-16

 s. Evidently, particle wave packets (for freely moving 

particles) spread very rapidly  

Note from the previous analysis that the rate of spreading of a wave packet is ultimately 

governed by the second derivative of (k) with respect to k. This is why a functional 

relationship between  and k is generally known as a dispersion relation: i.e., because it governs 

how wave packets disperse as time progresses. However for the special case where  is a linear 

function of k the second derivative of with respect to k is zero and hence there is no dispersion 

of wave pockets. i.e., wave packets propagate without changing shape. Now the dispersion wave 

relation   for light waves is linear in k. It follows that light pulses propagates through a vacuum 

without spreading. Another property of linear dispersion relations is that the phase velocity 

/pv k  and the group velocity gv d dt identical. Thus both plane light waves and light 

pulses propagates through a vacuum at the characteristic speed c = 3x10
8
 m/s. Of course the 

dispersion relation for particle waves is not linear in k. Hence particle plane waves and particle 

wave packets propagate at different velocities and particle wave packets also gradually disperse 

as time progresses. 

4.2 Momentum Operator in Position space: 

4.2.1.Definition (Position space)  

For a single particle with no electric charge and no spin the momentum operator can be written 

in the position basis as  

ˆ

,

tan

p i

where is the gradnient operator

is the reduced Planks cons t

i is theimaginaryunit

  








 

In one special dimension this becomes,  

ˆ ˆ xp p i
x


  


  

This is a commonly encountered form of the momentum operator through not the most general 

one. For a charged particle q in an electromagnetic field, described by the scalar potential and 

vector potential A, the momentum operator must be replaced by  

p̂ i qA  


  

where the canonical momentum operator is the above momentum operator  
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p̂ i  


  

This is of course true for electrically neutral particles also since the second term vanishes if q is 

zero and the original operator appears. 

4.2.2 Description of Quantum Particle: Wave Packets 

Free Particle  

Let us consider a particle whose potential energy at every point of the space is zero has a 

constant value. There is thus no force acting on the particle and we call it a free particle With 

( , ) 0V r t 


Schrodinger‘s time- dependant wave equation becomes 

2
2

( . )

2

( ) ( , ) ( , ) (21)
2

( , )

tan . int

(22)
2

i k r t

i r t r t
t m

This equation has the possible solutions of the form

r t Ae

Where Ais a cons t The wavevector k and are erconnected

k

m

This relationimplies that theenergy E and



 










  







 

 









2

2 2

(23)
2

( , )

momentum p of a free particle satisfy the relation

p
E

m

it is obvious that

r t A








 

which means that a plane wave of this type represents a particle having a uniform probability of 

presence throughout the space. According to superposition principle all linear combinations of 

the wave satisfying (22) are also the solution of equation (21) such a combination can be written 

in the form  

 
 

    
 

. 3

3 2

1
, . 24

2

i k r k t
r t g k e d k







 

 
 

Here d
3
H is by definition an infinitesimal volume element in k


-space : dkx dky dkz. The factor 

g(k) which may be complex must be sufficiently regular to ensure of the integral. 

A wave function of the type (24) obtained by superposition of plane waves is called a three 

dimensional wave packet. For simplification we often use a one dimensional wave packet for 
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study. Such a wave packet is obtained by the superposition of plane waves propagating to 0x: the 

wave function now depends only on x and t : 

   
    

1
, 25

2

i kx k t
x t g k w dk






 


   

If we choose the wave packet at the instant t = 0, the wavefunction is given by  

   
1

,0 ( ) 26
2

ikxx g k e dk


   

We observe that g(k) is simply the Fourier transform of ( ,0)x : 

     
1

,0 27
2

ikxk x e dx


   

It is to be noted that the formula (26) is not limited to the case of free particles it remains valid 

whatever be the potential. Thus the consequences that we are going to study are perfectly general  

4.2.3 Form of the Wave Packets at a given instant  

Let us suppose that  g k has the form shown in figure 4.2 it shows a peak with maximum at 

k=k0 and its (at half of the maximum height) is ∆k. in order to understand the behavior of the 

wave function (x,0) we consider a particularly simple case: we consider the wave function 

(x,0) which in fact consists of a superposition of an infinite number of plane waves e
ikx

 to be a 

sum of three plane waves only. We suppose the wave vectors of these plane waves to be 

0 0 0
2 2

k k
k k and k

 
  and let their amplitudes be respectively proportional to 1, ½, and ½ we 

then have  

 
 

 
 

0 0

0

0

0 2 2

0

1 1

2 22

1 cos 28
22

k k
i k x i k x

ik x

ik x

g k
x e e e

g k k
e x






    
    

   

 
   
 
 

  
     

  

 

We see that  x is maximum for x = 0. This is due to the fact that as x approaches the value 0, 

the three waves are in phase and interfere constructively as shown in fig 4.3. As we get farther 

from x=0 the waves get out of phase with respect to each other and  x  decreases. Completely 

destructive interference takes place when the phase difference between 
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   00
/2

: ,
2

i k k xik x x
e and e equals x vanishes for x x 

 
    being given by . 4x k   

 

 Fig 4.2       Fig 4.3 

Let us now return to the general wave packet of the form (26). Its form is also the result of 

interference between the various plane waves.  x  will be maximum when the plane waves 

undergo a constructive interference.  

Let the argument of the function ( ) ( ) :g k be k  

     i k
g k g k e


  

Let ( )k vary fairly regularly in the interval 0 0,
2 2

k k
k k

  
  

 
where  g k is appreciable; for 

very small values of k we can expand ( )k around 0k k : 

     
0

0 0
k k

d
k k k k

dk


 



 
    

 
 

In view of this we can rewrite (26) in the form: 

 
 

    
0 0

0 0

0

0

,0 (29)
2

(30)

i k x k
i k k x x

k k

e
x g k e dk

d
where x

dk
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The form (29) is quite suitable to study the variation of x: when |x-x0| is large, the function of k 

to be integrated oscillates a large number of times in the interval ∆k. We find that the successive 

oscillations cancel each other and the integral takes a negligible value (fig 4.4(a)). In other words 

for a value of x fixed away from x0 the phase of the various waves constituting (x, 0) vary 

rapidly in the region ∆k and these waves tend to destroy each other by interference. On the 

contrary if xx0 the function to be integrated is practically without any oscillations and  ,0x

is maximum fig4.4b 

 

The position xm(0) of the wave packet is then  

   

 

  

 

0

0 0

0

0

0

31

, ,0 :

, ,

. 1 (32)

m
k k

i k k x x

d
x D x

dk

As the value of x gets away from the value x x decreases this decreasebecomes

appreciable if e oscillates nearly once as k travels the region k that is to say

when

k x x

If x is the wid







 

 
    

 





  



 . 1 33

th of the wave packet we have

k x  

 

We thus arrive at a classical result between the widths of two functions which are the Fourier 

transformation of each other. The important fact is that the product ∆x.∆k has a lower limit; the 

exact value of this lower limit of course depends on how the widths ∆x and ∆k are defined. 

A wave packets such as (25) then represents the state of a particle having practically no chance 

(zero probability) to be present at t = 0 outside a region of width approximately ∆x centred 

around x0  

 

Fig 4.4 

 



 
 
 
Course MP 2.2  Block 2.2A KSOU 

68 
 

4.2.4Time Dependence of a Free Wave Packet: 

Consider a wave packet of a free particle described by (25). A particular plane wave 
 i kx t

e


propagates along the x- direction with a velocity  

   34V k
k




  

Since it depends on x and t only through the factor .x t
k

 
 

 
   

  V k is called the phase velocity of the plane wave. 

We know that for an electromagnetic wave propagating in vacuum V is independent of k and 

equal to the speed of light c. All the waves constituting a wave packet move with the same 

velocity so that the resultant wave packet also progresses at the same velocity c without getting 

deformed. On the other hand we also know that it is not so in a dispersive medium for which the 

phase velocity is given by  

 
 

 35
c

V k
n k

   

n(k) is the refractive index of the medium and varies with wavelength. 

In present situation under study we have a dispersive medium, because in view of the relation 

(22) the phase velocity is  

   36
2

k
V k

m
 


 

We shall presently see that when the various waves have different phase velocities the maximum 

xm of the wave packet does not move with the average phase velocity 0 0

0 2

k

k m





 contrary to what 

one would expect. 

As above we again start with an attempt to understand qualitatively happens for a wave packet 

before taking up a general case. Let us therefore again consider a superposition of the three 

waves of the relation (28) for any time t,  ,x t is givenby
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0 0 0 0

0 0

0 0

2 2 2 20

0

1 1
,

2 22

1 cos 37
2 22

k k
i k x t i k x t

i k x t

i k x t

g k
x t e e e

g k k
e x t

 
 












             
                          



 
 

   
 
 

   
    

  

 

We thus see that the maximum of  ,x t , which at t = 0was at x = 0, is now at a point given by  

  (38)mx t t
k





 

and not at the point 

0

0

x t
k


  

 

This result is physically explained in the fig 4.5 below.  

 

 
 

In the part (a) of this figure are shown the position of the three adjacent maximum (1),(2),(3) for 

each of the real parts of the three waves at t=0; the maxima indicated by (2) coincide at x = 0 

giving a constructive interference at this point which there corresponds to the position of the 

maximum of   ,0x . As the phase velocity increases with k (relation 36) the maximum (3) of 

the wave 0
2

k
k

 
 

 
will slowly overtake that the wave (k0) which in turn overtakes that of the 

wave 0
2

k
k

 
 

 
. At the end of certain time we will have the situation shown in part (b) of the 

figure: now these are maximum indicated by (3) which coincide and give the position of the 

                    Fig 4.5 
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maxima    | , |mx t of x t it is clear from the figure that xm(t) is not equal to 0

0

t
k


and a simple 

calculation will reproduce the formula (38). 

 

The displacement of the centre of the wave packet (25) can be obtained in a similar way by 

applying the method of the ―stationary phase. We can note that the form of the wave packet of 

free waves indicates that to change (x, 0) to (x, t) it is only necessary to change g(k) to 

  ( )i k tg k e  the reasoning of the earlier paragraphs remains valid under a replacement of the 

argument (k) of g(k) by : 

   

 

   

0 0

0

0

(31)

(38) max

39

m
k k k k

s
k k

k k t

The condition thus gives

d d
x t t

dk dk

Wethus again arrive at the result thevelocity of the imum of the wave packet is

d
V k

dk

 

 



 





   
    
   

 
  
 

  

Vg (k0) is called the group velocity of the wave packet. In view of the law of dispersion (22) we 

obtain; the following relation between the group velocity and the phase velocity: 

     0
02 40s o

K
V K V k

m
 


 

This result is important as it enables us to have a classical description of the free particles 

whenever we have a situation in which such a description is valid. 

4.3 Let us sum up 

From this chapter we have understood regarding the following concepts: 

What is a wave packet? What is the mathematical description of the wave packet? What is the 

significance of the study of these wave packets? What is their role in quantum mechanics? 

 

 

 

4.4 Key words: 

Wave packet, Wave-packet duality, Fourier theorem, Fourier integral, Gaussian wave packet, 

Wave velocity, Phase velocity.  
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4.5 Questions for self study 

What is a wave packet? What is the mathematical description of the wave packet?  

What is the significance of the study of these wave packets? What is their role in quantum 

mechanics?  

Discuss the wave packet concept in quantum mechanics.  

Discuss the time dependence of free wave packet.  

 

4.6 Problems 

See problems on normalization of a wave function given in the next chapter.  

4.7 References for further study 

1. Griffiths D.J., Introduction to electrodynamics, 5th edn., prentice-hall of India, New Delhi, 

2006. 

2. Sakurai JJ. And Tuan S.F. (editor), Modern quantum mechanics, addison wesley, India, 1999. 

3. Shankar R., Principles of quantum mechanics, 2nd edn., Plenum press, New Delhi, 1984. 

4. L.I.Schiff, Quantum mechanics 3rd. Edn. McGraw-Hill Kogakusha Ltd. New Delhi 1968. 

5. E.Merzbacher, Quantum mechanics, John Wiley, New York 

6. Richtmyer, Kennard and Lauritsen, Introduction to Modern Physics 

7. Introduction to Modern Physics by R.B.Singh, Vol1, 2nd Edn.
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UNIT 5: Time evolution and the Schrödinger equation. Spin precession, the Schrödinger and 

Heisenberg picture. 

 

 

Structure: 

5.0 Objectives 

5.1 Introduction 

5.2 Physical Significance of Wave Function ψ 

5.3 Normalization of the Wave function  

5.4 Quantum Dynamics 

5.5 Heisenberg picture: Heisenberg‘s equation of motion 

5.6 Let us sum up 

5.7 Key words  

5.8 Problems 

5.9 Questions for self study 

5.10 References for further study 

 

 

5.0 Objectives 

After studying this unit you will be able to understand the following aspects; 

Introductory ideas regarding the Schrödinger equation in one dimension and three dimensions, 

Later the concept of time evolution operator is introduced.  One gets an idea about the 

Schrödinger picture and the Heisenberg picture.  

 

5.1 Introduction 

Schrödinger equation: 

The wave function of a particle moving in x-direction is represented as  
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Making use of Eqns. (11) and (12, 13, & 14) we can write Eqn. (15) as  

 

Stationary State: Time- independent Schrodinger Equation: When the potential energy V is 

independent of time, the wave function (x, t) may be written as product of two wave functions, 

of which one is functional of x and the other is function of t only.  

                                      (x,t)=(x)f(t)                                                                                      (17)  

Substituting equation (16) in (10) and dividing the resulting equation throughout by (x) f(t) we 

find  

2 2

2

1 1
(18)

( ) 2 ( )

df d
i V

f t dt m x dx
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The left hand side of eqn(18) is function of time t only and the right hand is function of x 

only. Since x and t are independent of each other, this equality can hold only if each side is equal 

to the same constant. Each side has the dimensions of energy, so we write the separation constant 

as E.  

The separation constant E is a number and represents the total energy of the particle. Therefore  
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  [For a system whose potential energy V is a function of coordinates only, the total energy 

remains constant with time i.e., E is conserved. For such a system, the classical mechanical 

Hamiltonian function turns out to be the total energy in terms of coordinates and conjugate 

momenta]. 

 The time-dependent Schrödinger equation can be written as  

 

5.2 Physical Significance of Wave Function ψ 

It is natural to ask the question regarding the physical significance of the wave function 

ψ. For a vibrating string, it represents the displacement of the string from equilibrium position; in 

case of electromagnetic waves it represents the electric or magnetic field at the point under 

consideration. But there is no physical quantity with which the wave function ψ of matter wave 

may be associated. Just as the concepts of electric and magnetic field are abstraction to explain 

the interaction between electrical charges, the concept of wave function ψ is an abstraction to 

describe the dynamics of microscopic particles. But such an interpretation of ψ is of little 

significance. 

 In 1926 Max Born suggested a useful statistical interpretation of wave function, which 

was inspired by Einstein‘s concept of wave like behavior of particle like photons. According to 

Einstein the propagation of photon in space is described by Maxwell‘s equation involving 

electric field E (x, y, z, t) and magnetic field B (x, y, z, t). The magnitude of field E and B 

provides the probability of the location of the photon. In the region where E and B are large, the 

likelihood of finding the photon is also large and vice-versa. It is therefore reasonable to 

associate a probability function P with wave amplitude E. The probability function P (x, y, z, t) 

expresses the likelihood of finding the photon and is related to the wave amplitude E (x,y,z,t) as  

P (x,y,z,t) = |E(x,y,z,t)|
2 

According to Born, the wave function ψ(x,y,z,t) is analogous to the electric field E and 

Einstein‘s interpretation can be utilized to provide a physical meaning to the wave function 

associated with the material particles. The probability of finding a particle at (x,y,z) at time t is 

given by |ψ(x,y,z,t)|
2
 or ψ ψ* where ψ* is the complex conjugate of ψ. The probability of finding 

the particle in a volume element dxdydz centered around the point (x,y,z) is given by  

|ψ(x,y,z,t)|
2
 dxdydz  or  ψ ψ*dxdydz. 

Thus |ψ|
2
 is the probability density and ψ itself is called as the probability amplitude. 
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Since the probability of finding the particle somewhere in the universe is unity, we have: 

* 1 (25)dx dy dz
  

  
       

5.3 Normalization of the Wave function  

Now the probability is a real number between 0 and 1. An outcome of a measurement which has 

a probability 0 is an impossible outcome, whereas an outcome which has a probability 1 is a 

certain outcome. The probability of a measurement of x  

2

: ( ) ( , )xP t x t dx


 


                                                    (26) 

However a measurement of x must yield a value between -∞ and +∞, since the particle has to be 

located somewhere. It follows that : 1,xP    

  
2

( , ) 1x t dx



                                                                                                 (27) 

Which is generally known as the normalization condition for the wave function 

For example suppose that we wish to normalize the wave function of a Gaussian wave packet, 

centered on x=x0 and of characteristic width  :  

2 2
0( ) / (4 )

0( )
x x

x e
   

                                                             (28)                                     

In order to determine the normalization constant 0 we simply substitute Eq. (28) into Eq. (27) to 

obtain  

                                        
2 2

0
2 ( ) /(2 )

0 1
x x

e dx



 


                                                        (29) 

Changing the variable of integration to 0( ) / ( 2 )y x x we get   

    

22

0 2 1ye dy 





     

However, 

2ye dy 





                                       

Which implies that;  

                   
 

2

0 1 2
2

1

2



                                                                                    (30) 



 
 
 
Course MP 2.2  Block 2.2B KSOU 

79 
 

Hence, a general normalized Gaussian wavefunction takes the form 

 

 
2

0
24

1
2 4

( ) (31)

2

x xie
x e







   

where  is an arbitrary real phase-angle. 

 Now, it is important to demonstrate that if a wave function is initially normalized then it stays 

normalized as it evolves in time a according to Schrödinger‘s equation. If this is not the case then 

the probability interpretation of the wave function is untenable, since it does not make sense for 

the probability that a measurement of x yields any possible outcome ( which is manifestly unity) 

to change in time. Hence we required that  

                              (32) 

    

for wavefunctions satisfying Schrodinger‘s equation. The above equation gives                                        

                    (33) 

 

 

 

 

 

 

Thus, 
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However this is an necessary condition for the integral on the left-hand side Eq.(27) to converge. 

Hence we conclude that all wave functions which are square integrable [i.e., are such that the 

integral in Eq (27) converges] have the property that if the normalization condition (27) is 

satisfies at one instant in time then it is satisfied at all subsequent times.  

It is also possible to demonstrate via very similar analysis to above that  

:
( , ) ( , ) 0

x a bdp
j b t j a t

dt


  

                                                       (36) 

Where  

*
*( , )

2

i
j x t

m x x

 
 
  

  
  


                                                                           

is known as the probability current. Note that j is real. Equation (36) is a probability 

conservation equation. According to this equation the probability of a measurement of x lying in 

the interval a to b evolves in time due to the difference between the flux of probability into the 

interval [i.e., j(a, t)] and that our of the interval [i.e., j(b, t)]. Here we are interpreting j(x, t) as the 

flux of probability in the +x- direction at position x and time t.  

Note finally that not all wave function can be normalized according to the scheme set out in 

equation (4.4) for instance a plane wave function  

( )

0( , ) i kx tx t e   
                                         

Is not square integrable and thus cannot be normalized. For such wavefunctions, the best we can 

say is that  

2

: ( ) ( , )
b

x a b t
a

P x t dx                           (4.21) 

In the following all wave functions are assumed to be square integrable and normalized unless 

otherwise stated. 
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5.4 Quantum Dynamics 

Variation of expectation value of an operator i.e., Â can be due to; 

i) Change of state vector  with time, but Â remaining unchanged (Schrodinger 

picture). 

ii) Change of Â with time,  remaining constant (Heisenberg picture)  

iii) Change of both  & Â with time (interaction picture).  

 

Time evolution operator & Schrodinger Picture: 

Dynamical Postulate: Corresponding to every quantum mechanical system, there exists a family 

of lower operators 0
ˆ ( , )U t t defined on the infinite distance. Hilbert space of the system which 

describe the evolution of the state vector from time t0 to time t; 

0 0

0, 0

0, , 0

0 0,

† 1

0 0

1

0 0,

0 0

ˆ( ) ( , ) ( )

ˆ

:

ˆ ˆ( )

ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ( , ) ( )

ˆ( , ) ( , )

ˆ( , ) ( )

ˆ( ) ( , ) ( ) (38)

t U t t t

HereU is called thetimeevolutionoperator

Someof its properties are

U t t I

U t t U t t I

U t t U t t I

U t t U t t

U t t U t t

We have t U t t t

 

 



















 

1 0 1, 0

1 1, 0 0

1

0 0

ˆ ˆ ˆ( , ) ( , ) ( ) (39)

ˆ ˆ ˆ. ., ( , ) ( ) ( , ) (40)

inf , ;

ˆ ˆ ˆ( , ) ( , ) ( , ) (41)

Sothat U t t U t t U t t

i e U t t U t t U t t

Putting t t t where t is initesimal we have

U t t U t t t U t t t

 

 





 

  

 

ˆ ( , ) inf ( ) :

ˆ ˆ ˆ( , ) ( ) (42)

U t t t is an initesimal operator unitary and canbe written as

i
U t t t I t H t



 



 
   

 

 

 

where the Hermitian operator ˆ ( )H t is called the generator of the infinitesimal unitary 

transformation ( ) ( )t t t    . 

Using (42), (41) becomes;  
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0 0 0

0 0
0

0
0

0
0

ˆ ˆ ˆ ˆ( , ) ( , ) ( ) ( , )

ˆ( , ) ( , ) ˆ ˆ. ., ( ) ( , )

lim 0

ˆ ( , ) ˆ ˆ( ) ( , )

ˆ ( , ) ˆ ˆ. ., ( ) ( , )

i
U t t U t t t t H t U t t t

U t t U t t t i
i e H t U t t t

t

Taking the it t we get

U t t i
H t U t t

t

U t t
i e i H t U t t

t

  








 
    

 

   
   

 



  
  

  














 

Integrating this with respect to t between the limits t0 and t we get  

0 0

0

0 0

0 0

0
0 0

ˆ ˆ ˆ( ', ) ( ') ( ', ) '

ˆ ˆ ˆ ˆ. ., ( , ) ( ') ( ', ) '

ˆ ( , ) ˆ ˆ. ., ( ) ( , ) ( )

( ) ˆ. ., ( ) ( ) (43)

t t

t t

t

t

i
dU t t H t U t t dt

i
i e U t t I H t U t t dt

U t t
i e i H t U t t t

t

t
i e i H t t

t






 
  

 

 
  

 











 











 

This is the equation of motion for the state vector and is known as the time dependent 

Schrodinger equation  

 

5.5 Heisenberg picture: Heisenberg’s equation of motion:  

Here we shall write the state vector and operator as ˆ
H Hand A . In this case H is time 

independent and ˆ
HA depends on time  
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Let us define 

1

0

0

1

0 0

†

0

ˆ( ) ( ) ( , ) ( )

( ) ( )

( )

ˆ ˆ ˆ( ) ( , ) ( , )

( , )

H H

H

H

t by t U t t t

Since it is time independent t t

is the statevector in Schrodinger picture

The relationbetweenthe operator in Heisenberg and Schrodinger pictureis

A t U t t AU t t

U t t

  

 















 

 

0

†
†

0

†
†

† †

† † † †

ˆ ˆ ( , )

ˆ ˆ
ˆ ˆˆ

ˆ
ˆ ˆ( ) ( , )

ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ

H

H

AU t t

dA U U
Thus AU U A

dt t t

U
But we knowthat i H t U t t

t

U i U i
HU and U H

t t

dA i
U HAU U AHU

dt

i
U HUU AU U AUU HU

i

 
 

 






    
      

    

 
   

 

 
  
 

 
  
 



 






 ˆ ˆ ˆ

ˆˆ ,

ˆ 1 ˆ ˆ, (44)

ˆ exp

ˆ ˆ 1 ˆ ˆ, (45)

H

H H H H

H

H
H H

H

H H
H H

H A A H

i
H A

dA
A H

dt i

If A licitly depends ontimethen

dA A
A H

dt t i



        

 
 


  
 







 

Equation (44) and (45) are called as Heisenberg‘s equation of motion for the operator ˆ
HA . 

 In Heisenberg picture the equation of motion for the expectation value ˆ
HA is given by  
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,

,

ˆ ˆ ( )

ˆ

1 ˆ ˆˆ exp

ˆ ˆ 1 ˆ ˆˆ exp

H H H H

H
H H

H H H

H
H

H H H

d d
A A t

dt dt

dA

dt

A H if A has no licit dependance on time and
i

d A A
A H if A has lict dependence on time

dt t i

 

 





 
 


  
 




 

Equations of motion for expectation values in the Heisenberg and Schrödinger picture are the 

same  

5.6 Let us sum up 

In this section we have considered ideas regarding the Schodinger equation in one dimension and 

three dimensions. Also we have understood the physical significance of the wave function. Later 

the concept of time evolution operator is introduced.  Also, we gained the idea about the 

Schodinger picture and the Heisenberg picture. 

 

5.7 Key words  

Wave function, One dimension, Three dimension, Schodinger equation, Time evolution, 

Schodinger picture, Heisenberg picture.  

5.8 Problems 

Example1 

Suppose 
3 /( , ) ( ) .iEtx t A x x e   

Find V(x) such that the Schrodinger equation 

is satisfied  

Solution:  

The wave function is written as a product: 
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Example 2 

The wave function for a particle contined to 0 x a  in a ground state was found to be  
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Example 3. 

Find an A and B so that  
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EXAMPLE 4. 

Normalize the wave function  
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5.9 Questions for self study 

Discuss the time evolution operator and its properties in quantum mechanics. 

Discuss the time evolution operator and its significance in quantum mechanics. 

Distinguish between Schodinger picture and Heisenberg picture. 

 

5.10 References for further study 

 Introduction to Modern Physics by R.B.Singh, Vol1, 2
nd

 Edn. 
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UNIT 6: The Heisenberg equation of motion, free particles, Ehrenfest's theorem.    

Structure: 

6.0 Objectives 

6.1 Introduction 

6.2 Heisenberg equation of motion 

6.3 Expectation value 

6.4 Ehrenfest's theorem 

6.5 Let us sum up 

6.6 Key words 

6.7 Problems 

6.8 Questions for self study 

6.9 References for further study 

 

6.0 Objectives:  

After studying this unit you will be able to understand the following aspects; 

 Heisenberg equation of motion 

 Expectation value 

 Ehrenfest's theorem 

 

6.1 Introduction: 

 In quantum mechanics we have come across several types of equations which describe 

the motion of quantum mechanical particles. In this section we shall discuss the Heisenberg 

equations of motion which is based on Heisenberg picture. Also, we shall discuss the expectation 

value of an observable and the method of arriving at it. Later we shall discuss the Ehrenfest‘s 

theorem in case of the position coordinate and the momentum coordinate. 

6.2 Heisenberg equation of motion: 

Here we shall write the state vector and operator as ˆ
H Hand A . In this case H is time 

independent and ˆ
HA depends on time  
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Let us define 

1

0

0

1

0 0

†

0

ˆ( ) ( ) ( , ) ( )

( ) ( )

( )

ˆ ˆ ˆ( ) ( , ) ( , )

( , )

H H

H

H

t by t U t t t

Since it is time independent t t

is the statevector in Schrodinger picture

The relationbetweenthe operator in Heisenberg and Schrodinger pictureis

A t U t t AU t t

U t t

  

 















 

 

0

†
†

0

†
†

† †

† † † †

ˆ ˆ ( , )

ˆ ˆ
ˆ ˆˆ

ˆ
ˆ ˆ( ) ( , )

ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ

H

H

AU t t

dA U U
Thus AU U A

dt t t

U
But we knowthat i H t U t t

t

U i U i
HU and U H

t t

dA i
U HAU U AHU

dt

i
U HUU AU U AUU HU

i

 
 

 






    
      

    

 
   

 

 
  
 

 
  
 



 






 ˆ ˆ ˆ

ˆˆ ,

ˆ 1 ˆ ˆ, (1)

ˆ exp

ˆ ˆ 1 ˆ ˆ, (2)

H

H H H H

H

H
H H

H

H H
H H

H A A H

i
H A

dA
A H

dt i

If A licitly depends ontimethen

dA A
A H

dt t i



        

 
 


  
 







 

Equation (1) and (2) are called as Heisenberg‘s equation of motion for the operator ˆ
HA . 
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6.3 Expectation value: 

When the wave function  of a system is not an Eigen function of operator Q̂ representing an 

observable Q of the system then the measurement of Q with identical systems will give various 

possible values. The expectation value of observable Q is equal to the average value of the 

results of these measurements.  

The expectation value of a physical quantity Q represented by operator Q̂ is defined by  

 

Where  is the state of the system. If the wave function  is not normalized the expectation 

value is given by  

 

The expectation values of the physical quantities , , ,xx p p E  etc., with respect to the state  are 

calculated from the following equation respectively  
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6.4 Ehrenfest's theorem: 

The theorem states that the classical equation of motion viz  

;x x
x

P dpdx V
F

dt m dt x


   


 

are valid in Quantum mechanics if we replace the physical quantities such as x, px by their 

expectation values. Thus the Quantum equations of motion are;  

 

In other words, the expectation value of physical quantities obeys classical equations of motion.  

Proof: The time derivative of expression value of position coordinate x is  

 

All changes in x with time are being determined by the change in  therefore there is no term 

like 
x

t




in above equation. This is how Schrödinger mechanics works.  

 Substituting the values 
*

and
t t

  

 
of obtained from Schrödinger equation into the 

above equation, we have; 
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where   

 

Making use of the identity  

 

We can write  

 

In view of (a) we have  

 

Where use of divergence theorem has been made to transform the volume integral into surface 

integral. The surface integral vanishes because 0 .as x So    
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Thus we have:  
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6.5 Let us sum up: 

After studying this unit you we have understood the following aspects; 

 Heisenberg equation of motion 

 Expectation value 

 Ehrenfest's theorem 

 

6.6 Key words: 

Heisenberg equation of motion, Expectation value, Ehrenfest's theorem 

6.7 Problems: 

Example 1. 

A particle m a one dimensional box 0 x a  is in the ground state. Find x and p   

SOLUTION  

The wave function is: 
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Example 2. 

’ 
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6.8 Questions for self study: 

1. Arrive at the Heisenberg equation of motion. Narrate its importance.  

2. What do you mean by Expectation value? Narrate the method of finding the value of  

     Expectation value of an observable. 

3. State and prove Ehrenfest's theorem for the position coordinate.  

4. State and prove Ehrenfest's theorem for the momentum coordinate. 

 

6.9 References for further study:  

1. Sakurai JJ. And Tuan S.F. (editor), Modern quantum mechanics, addison wesley, India, 1999. 

2. Shankar R., Principles of quantum mechanics, 2nd edn., Plenum press, New Delhi, 1984. 

3. L.I.Schiff, Quantum mechanics 3rd. Edn. McGraw-Hill Kogakusha Ltd. New Delhi 1968. 

4. E.Merzbacher, Quantum mechanics, John Wiley, New York 

5. Richtmyer, Kennard and Lauritsen, Introduction to Modern Physics 

6. Introduction to Modern Physics by R.B.Singh, Vol1, 2nd Edn. 

7. Quantum mechanics by Gupta and Kumar.  
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UNIT-7: Simple harmonic oscillator, Schrödinger wave equation, Solution by operator and 

differential equation approach. 

Structure: 

7.0 Objectives.  

7.1 Introduction. 

7.2 Schrodinger‘s wave equation for linear harmonic oscillator. 

7.3 Solution by differential equation approach. 

7.4 Solution by operator method. 

7.5 Let us sum up. 

7.6 Key words. 

7.7 Question for self Study. 

7.8 Reference for further study. 

7.9 Problems. 

 

7.0 Objectives.  

After studying this unit you will be able to understand the following aspects: Introduction 

to harmonic oscillator, Schrodinger‘s wave equation for linear harmonic oscillator solution by 

differential equation approach and solution by operator method. 

 

7.1 Introduction: Simple harmonic oscillator 

 

  The classical Hamiltonian of a simple harmonic oscillator is  

2
21

(1)
2 2

p
H Kx

m
   

Where k>0 is the so called force constant of the oscillator. Assuming that the quantum 

mechanical Hamiltonian has the same from as the classical Hamiltonian, the time independent 

Schrödinger equation for a particle of mass m and energy E moving in a simple harmonic 

potential becomes  

 
2

2

2 2

2 1
(2)

2

d m
Kx E

dx
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Let mK where  is the oscillator‘s classical angular frequency of oscillation.  

Furthermore,  

 

 
2

2

2

(3)

2
(4)

2

0 (5)

m
y x

and

E

Equation reduces to

d
y

dy







 





  




 

We need to find solutions to the above equation which are bounded at infinity: i.e., solutions 

which satisfy the boundary condition 0 | |as y   . 

Consider the behavior of the solution to eqn (5) in the limit | | 1.y  As is easily seen, in this limit 

the equation simplifies somewhat to give  

2
2

2
0

d
y

dy


   

 

The approximation solutions to the above equation are:  

     
2 /2 7yy A y e   

where A(y) is a relatively slowly varying function of y. Clearly if (y) is to remain bounded as 

|y|∞ then we must chose the exponentially decaying solution. This suggests that we should 

write  

2 /2( ) ( ) (8)yy h y e   

where we would expect h(y) to be an algebraic rather than an exponential function of y.  

Substituting Eq. (8) into Eq. (5) we obtain  

 
2

2
2 1 0 (9)

d h dh
y e h

dydy
     

Let us attempt a power-law solution of the form  

0

( ) (10)i
i

i

h y c y
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Inserting this test solution into Eq. (9) and equating the co-efficient of y
i
, we obtain the recursion 

relation  

 

 

  
 2

2 1
11

1 2
i i

i
c c

i i




 


 
 

Consider the behavior of h(y) in the limit |y|∞. The above recursion relation simplifies to  

2

2
(12)i ic c

i
   

Hence at larger |y|, when the higher powers of y dominate, we have  

 
2

2

(13)
!

j
y

j

y
h y C Ce

j
   

It follows that )()( yhy  exp(-y
2
/2) varies as exp(y

2
/2) as |y|. This behavior is 

unacceptable, since it does not satisfy the boundary condition 0 as |y|. The only way in 

which we can prevent  from blowing up |y| is to demand that the power series (10) 

terminate at some finite value of i. this implies from the recursion relation (11)that  

2 1 (14)n    

Where n is a non negative integer. Note that the number of terms in the power series (!0) is n+1. 

Finally using Eq. (4) we obtain  

 1 2 (15)

0,1,2.........

E n

for n

 




 

  

Hence, we conclude that a particle moving in a harmonic potential has quantized energy levels 

which are equally spaced. The spacing between successive energy levels is   where  is the 

classical oscillation frequency. Furthermore, the lowest energy the lowest energy state (n = 1) 

possesses the finite energy (1/2)  . This is sometimes called zero-point energy. It is easily 

demonstrated that the (normalization) wavefunction of the lowest energy state takes the form 

2 22

0 1 4
( ) (16)

/

x de
x

d

where d m










 

 

Let )(xn  be an energy eigenstate of the harmonic oscillator corresponding to the eigenvalue 
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   1/ 2 17nE n     

Assuming that n  are properly normalized (and real), we have  

 
2

2

2

(18)

(5)

2 1 (19)

, / .

1
(20)

2

,

n m nm

n n

dx

Equation canbe written

d
y n

dy

where x dy and d m it is helpful to definetheoperators

d
a y

dy

As is easily demonstrated theseoperators satisfy thecommutatio

  

 











 
     
 

 

 
  

 







 

 

 

   

 

 

,

1

1

1 21

sin 19

22

1 23

1 24

25

n n

n n

n n

n n

n relation

a a

u g these operators Eq can also writtenin the forms

a a n

a a n

The above two equations imply that

a n

a n

 

 

 

 

 

 

 

 

 

    



 

 

  

We conclude that a+ and a- are raising and lowering operators, respectively for the harmonic 

oscillator: i.e., operating on the wavefunction with a+ causes the quantum number n to increase 

by unity and vice versa. The Hamiltonian for the harmonic oscillator can be written in the form  

1
(26)

2
H a a  

 
  

 
  

From which the result  

   1/ 2 27n n n nH n E      

is readily deduced. Finally, Eq. (18), (24) and (25) yield the useful expression  

 

   , 1 , 1

2

28
2

m n n n

m n m n

d
x dx a a dx

m n
m
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Linear Harmonic Oscillator:  

A study of a linear harmonic oscillator
 
is particularly important in Physics. In its simplest form it 

represents the case of a particle moving in a potential which depends only on x and has the form:  

 21
( ) 29

2
V x kx  

where k is a real positive constant. The particle is attracted towards the equilibrium position by 

the restoring force: 

 kx
dx

dV
F   

The force is thus proportional to the displacement from the mean position. We know that 

classically such a force results in the sinusoidal oscillations of the particle describe by an 

equation of the type  

 

 

 

cos

30

x A t

with the angualr frequency given by

k

m

 





 



 

A large number of physical systems are described by such of the harmonic oscillator among 

these are the vibrations of atom in a molecule oscillations of atoms or ions in a crystal lattice 

surface vibrations of spherical atomic nuclei electromagnetic field etc:,  

A detailed study of the harmonic oscillator is thus of prime importance in quantum mechanics 

Moreover it represents a quantum system for which the Schrodinger equation can be rigorously 

solved. 

 

7.2 Schrodinger’s Equation for a Harmonic Oscillator:  

The classical Hamiltonian for a particle described a linear simple harmonic motion is the sum of 

its kinetic and potential energies. Thus,  

2
2

2

1

2
kx

m

p
H cl    

where p is the momentum of the particle. The quantum mechanical Hamiltonian is obtained by 

substituting the corresponding operator in the above equation. We thus get  
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2
2

2 2
2 2

2

2

2 2
2 2

2

ˆ 1ˆ ˆ
2 2

1
31

2 2

ˆ ˆ; ,

ˆ 32

ˆ (31)

1
.

2 2

p
H kx

m

d
m x

m dx

d
where p i x x and k m

dx

The time independent Schrodinger equation is thus

H E

where E is the total energy of the particle

Substituting for H from we get

d
m x

m dx





 



 

 

   




 









 
2

2 2

2 2

2 1
0 33

2

E

or

d m
E m x

dx

 


 


  



 
   

   

To solve this equation we introduce dimensionless variables  

 

   
2

2

2

2
34

(33) :

0 35

m E
x and

Eqn then becomes

d

d


 




  



 

  

 
 

 

Asymptotic Behavior (Energy Eigen values): 

From equation (34) it is clear that for every large values of  we have  become negligible 

compared to 
2
 Eqn (35) thus becomes  

 
2

2

2
0 36

d

d


 


    

The corresponding solution for the wave function is therefore of the form  

 
2

exp 37
2

 
  
 

 

However we must ensure the realistic condition that  vanishes for =±. We must therefore 

retain only the solution with negative sign in 37. We thus write the solution of (35) in the form  



 
 
 
Course MP 2.2  Block 2.2B KSOU 

106 
 

     
2

exp 38
2

H


  
 

   
 

 

Substituting this into (35) we get  

         2 1 0 39H H H          

Where the primes indicates differentiation w.r.t  . We look for a solution in the form of a power 

series of the type 

   2 3
0 1 2 3 40H a a a a        

On substituting for      , , (39)H H and H eqn becomes     

        0.......1111

........................3.22.22

...........5.44.33.22.1

3

3

2

210

3

3

2

21

3

5

2

432













aaaa

aaa

aaaa

 

In order for this series to vanish for all values of  (i.e for H() to be a solution of (39) the 

coefficient of individual powers of  must vanish separately Thus  

 

 

 

 













03.215.4

02.214.3

01.213.2

012.1

35

24

13

02

aa

aa

aa

aa









 

which leads to the recursion formula for the coefficient of 
l
  

    

 

  
 

1 2

2

1 2 1 2.1 0

1 2
41

1 2

l

l l

l l a a

l
a a

l l









     

 
 

 

 

In order to ensure that () vanishes for = ±∞ the series (40) must be limited*. Let us suppose 

that the series breaks at the n
th 

power of . Thus an+2must be zero. This is evidently the case if in 

(41) we have  

2 1 (42)n    

*Note: As l become large the recursion formula (41) gives ll a
l

a
2

2  . The series (40) behaves 

like exp(
2
)  
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The wave function () then becomes according to (38)  

     













2
exp

2exp.exp

2

22





 

which is a result that we have already discarded. To show that ratio of the coefficient of 
1+2

 and 


1
 in exp (

2
) is also 2/l, we have  

 
   

 

   

4 1 1 2
2 2

1

exp ............ ..........
2! 1 2 ! 2 / 2

/ 2 ! 1 2 2 2
1 arg

/ 2 1/ 2 1 !

l
l

from which the required ratio is

l
for l e values of l

l l l ll

  
 





      
  

 
    

    

 

 

where n is an integer. Substituting for  from (34) we have for the allowed energy values of the 

oscillator  

 1 2 (43)nE n     

n is called the quantum number of the corresponding state of the oscillator. En are called the 

energy eigen values of the harmonic oscillator.  

 

7.3 Discussion  

According to Planck‘s original ideas the energies of a liner oscillator are quantized as n so 

that the lowest energy state has zero energy for n=0. However the present result (43) shows that 

all the energy levels are displaced upwards by an amount 
2

1
. The ground state energy of the 

oscillator corresponding to n=0 is: 


2

1
0 E  

which is called the zero-point energy of the oscillator. Thus even in its lowest state the system is 

not deprived of all its energy. Such an existence of zero point energy which has led to an 

improved agreement with experimental result is an important success of quantum mechanics  

Figure (1) shows the various energy levels of a harmonic oscillator  
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       Fig (1) 

Harmonic Oscillator Wave Function : 

The solutions of equation (35) are the Eigen functions of the harmonic oscillator from (38) we 

can write them in the form  

  









2
exp)(

2
 nn Hx  

As we have found ,12  n the function  nH satisfy the following relation which is evident 

from (39)  

     12 2 0 (44)n n nH H nH        

This is the equation satisfied by the Hermite polynomials. Thus the Eigen functions of a 

harmonic oscillator are expressed through Hermite polynomials.  

The normalized oscillator wave function can be written as  

   
2

( ) exp 45
2

n n nx N H


 
 

   
 

 

where Nn is the normalizing constant. This constant can be evaluated from the usual normalizing 

condition  

     

   

         
2

*

1 46

47

m n

m n

m n
m n m n

x x dx

where x x

Now

N N
x x dx H H e d

a



 

 

    





 

 









 

 

m
where and x
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The generating function for Hermite polynomials is  

 
   

 
   

22

22

,
!

,
!

n
sn

n

m
tm

m

H s
S s e

n

H t
T t e

m

 

 







 

 

 

 





 

   

 

   

2 2

2 2 2

2

2 2

2

2

. . .
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n mn m

n m

s t s t

s tst

st

H H
Then S T e d s t e d

n m

e d

e e d s t
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We thus have  

   















 

!

2
......

!2

2
21

!!

222

22

n

tsts
st

ede
mn

HH
ts

nnn

st

n

mn

m

mn




 

 

Equating the coefficient of s
n
t
m

 in the two equal series expansions, we have  

    0
!!

1 2




   deHH
mn

mn  

If however m = n, we have, on comparing the coefficients of s
n
t
n
  

    !.2.
2

ndeHH n

mn   


  

This result combined with (46) and (47) gives value of the normalizing constant  

*

1
. (48)
2 . !

(49)

n n

n

m n mn

N
n

For this value N

dx





  

 
  
 



 

Thus the harmonic oscillators are Hermite orthogonal functions which can be normalized with 

constant Nn 
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Fig: 2(a) 

The normalized wave function fro n=0,`1,2 and 10 shown graphically in fig (2). The 

correspondence probability distribution are also shown as variations of |
2
|. The dotted curves 

show the classical probability densities.  

 

     Fig: 2(b) 

 

     Fig: 2(c) 

 

     Fig: 2(d) 
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     Fig: 2(e) 

 

7.4 Linear harmonic oscillator- Operator method  

We know proceed to solve the harmonic oscillator problem using an entirely different method 

based on operators and algebra alone. Consider the following operators defined in terms of the 

position and momentum operators. 

†

2

2

m ip
a x

m

m ip
a x

m









 
  

 

 
  

 





 

We can rewrite the Hamiltonian using these operators and then solve the Eigen vector/Eigen 

values problem in an algebraic way. An important part of working with these operators is to 

determine their commutator. 

 

Example 1: 

Derive the commutator  ., aa  

Solution:  

To find this commutator we rely on [x, p]=i   
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†

2 2

†

, . .
2 2

.
2

1 1
, , , ,

2

, , 0

1
, , ,

2

, ,
2

2

m ip m ip
a a x x

m m

m ip ip
x x

m m

m i
x x x p p x p p

m m m

Since x x p p this simplifies to

m i
a a x p p x

m m

i
x p p x

i

 

 



 



  



 

                  

    
      

    

 
    

 

 

         

  



 









    

   

† † †

, ,

, 1

, 1

x p x p

i i
x p i

a a aa a a

 

 
  

    
 




 

 

 

Example 2:  

Show that the harmonic oscillator Hamiltonian can be written in the form  

† 1

2
H a a

 
  

 
  

Solution:  

We begin writing the position and momentum in terms of †,a a . Notice that  

 

    

†

†

2
2 † 2 † † †

2 2 2

2

.

2 2

m ip m ip m
a a x x x

m m

and sothe positioncanbe written as

x a a
m

Theharmonicoscillator Hamiltoniancontainthe squareof x Squaring this term we find

x a a a aa a a a
m m
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†

†

†

2
2

2 † † †

in , .

2 2

1

2 2

,
2

2 4

Nowwe write the momentumoperator terms of a a consider

m ip m ip
a a x x

m m

m ip
i p

m m

And so we can write momentum as

m
p i a a

p m
a aa a a a

m m

 

 



 





   
       

   

 

   

    

 

 





 

Now we can insert terms into the Hamiltonian  

   

2
2 2

2
2 2

2 † † † 2 † † †

2

1

2 2

4 2 2

2 2 4

p
H m x

m

m
a aa a a a a aa a a a

m

Notice that

m

m



 



 



 

                    

 
 

 

 

 

 

Therefore  
2

2 †,a a terms cancel. This leaves  

† † † †2 2
4 2

H aa a a aa a a
 
         

   

 

 

† † † † †

† †

† †

, 1 1 ,

1
1 2

4 2

, , ,

Now we use the commutation relation

a a aa a a to write aa a a and we have

H a a a a

someother importent commutation relations are

H a a H a a




 

       

 
      

 

    






 

 

7.4(a) Number states of the Harmonic oscillator: 

Now that we have expressed the Hamiltonian in terms of the operators 
†

,a a we can derive the 

energy Eigen states. We being by stating the Eigen values  
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n n nH E E E  

To simplify notation, we set .nE n We have already seen that  

1
, 0,1,2............

2
nE n n

 
   

 
  

Using the form of the Hamiltonian written in terms of †,a a , we find that  

 † †1

2 2
H n a a n a a n n


 
 

    
 


   

However we know that  

1

2
nH n E n n n

 
   

 
  

Equating this to the above we have  

 †

2 2
a a n n n n n

 
   

 
   

Now divide throughout by  and subtract the common term ½|n> from both sides giving  

†a a n n n  

This shows that the energy Eigen state is an eigenstate of †a a with eigenvalue n. The operator 

†a a is called the number operator. 

 

7.5 Let sum up  

In this section we have understood the method of solving the Schroedinger equation in case of 

linear harmonic oscillator using the differential equation approach and operator approach  

 

7.6 Key words  

Linear harmonic oscillator, Ladder operator, Number operator, Energy eigen state, Energy eigen 

value. 

 

7.7 Question for self study  

1. Arrive at the energy eigen values and eigen function of the linear harmonic oscillator by 

differential equation approach. 
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2. Arrive at the energy Eigen values and eigen function of the linear harmonic oscillator by 

operator method. 

3. Write note on ladder operator. 

4. Write a note on number operator. 

7.8 Problems  

1. Calculate the zero point energy of a system consisting of a mass of 1g connected to a 

fixed point by a spring which is stretched by 1 cm by a force of 0.1 N the particle being 

constrained to move only along x-axis  

HINT: zero point energy= 0

1

2
   

 0

33:5.25 10

k m

Ans joule








 

2. The energy of a linear harmonic oscillator in third excited state is 0.1eV. Find the 

frequency of vibration. 

 

7.9 References for further study  

1. Sakurai JJ and Tuan S.F (editor) Modern quantum mechanics, Addison Wesley India 

1999 

2. Shankar R principles of quantum mechanics, 2
nd

 edition. Plenum press New Delhi 1984. 

3. L.I Schiff, Quantum mechanics 3
rd

 Edition McGraw-Hill Kogakusha Ltd.New Delhi 

4. E.Merzbacher, QM John Wiley, New York 
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Unit-8: Spherically symmetric potentials, hydrogen atom, two body problem, energy eigenstates 

and eigen values  

Structure: 

8.0 Objectives 

8.1 Introduction 

8.2 Radial equation 

8.3 Infinite spherical potential  

8.4 Hydrogen atom: Solution of the wave equation: Eigen function and eigen values. 

8.5 Let us sum up. 

8.6 Key words  

8.7 Question for self study 

8.8 Reference for further study  

 

 

 

8.0 Objectives  

1 After Studying this unit you will be able to understand the following aspects; 

2 What is meant by central potential? 

3 What is meant by radial equation? 

4 What is the form of wave equation in case of hydrogen atom? 

5 How to solve the wave equation in case of hydrogen atom? 

6 How to find the Eigen function and Eigen values in case of hydrogen atom? 

  8.1 Introduction  

In this chapter we shall investigate the interaction of a non-relativistic particle of mass m and 

energy E with various so called central potentials. V(r) where 2 2 2r x y z   is the radial 

distance from the origin. It is of course most convenient to work in spherical polar co ordinates 

–r, ,-during such an investigation. Thus we shall be searching for stationary wavefunctions 

(r,,) which satisfy the time independent Schrodinger equation  
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(1)H E   

where the Hamiltonian takes the standard non-relativistic form 

2

( ) (2)
2

p
H V r

m
   

8.2 Radial Equation  

Now we have seen that the Cartesian components of the momentum P can be represented as  

(3)r

i

P i
x


 


  

For  i=1,2,3, where x1  x, x2  y, x3  z, and  r(x1,x2,x3). Likewise it is easily demonstrated 

from the above expression and the basic definitions of the spherical polar coordinates that the 

radial component of the momentum can be represented as  

.
(4)r

P r
P i

r r


   


  

Recall that the angular momentum vector, L, is defined 

. (5)L r p    

This expression can also be written in the following form: 

. (6)i ijk jL x Pk   

Here the €ijk (where i,j,k all run from 1 to 3) are elements of the so called totally anti-

symmetric tensor. The values of the various elements of this tensor are determined via a simple 

rule: 

0 , ,

1 , , 1,2,3

1 , , 1,2,3

ijk

if i j k not all different

if i j k arecyclic permutationof

if i j k areanti cyclic permutation of




  
 

-------------(7) 

Thus 123 231 321 132 112 1311, 1 0and           etc. Equation (6) also makes use of the 

Einstein summation convention, according to which repeated indices summed (from 1 to 3). 

For instance, aibi=a1b1+a2b2+a3b3. Making use of this convention as well as Eq(7) it is easily 

seen that equation (5) and (6) are indeed equivalent. 

Let us calculate the value of L
2
 using equation (6). According to our new notation L

2
 is the 

same as LiLi. Thus, we obtain  

2 (8)ijk j k ilm l m ijk ilm j k l mL x P x p x p x p        
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Note that we are able to shift the position of €ilm because its elements are just numbers and 

therefore commute with all of the xi and the pi now it is easily demonstrated that  

(9)ijk ilm jl km jm kl         

Here ij is the usual Kronecker delta, whose elements are determined according to the rule 

1

0 (10)
ij

if i and j the same

if i and j different



 

 
 

 

It follows from equation (8) and (9) that  

)11(.2  ijjijiji pxpxpxpxL  

Here we have made use of the fairly self-evident result that iijiij baba  . We have also been 

careful to preserve the order of the various terms on the right hand side of the above expression 

since the xi and pi do not necessarily commute with one another. 

We now need to rearrange the order of the terms on the right-hand side of equation (11) we can 

achieve this by making use of the fundamental commutation relation for the xi and the pi  

   12,  ijji ipx   

Thus  

     

 132 ,

,,

2







iijjiijjii

jiijjijijiijijii

ijjijijjijii

pxixppxppxx

pxixppxpxippxx

pxxppxppxpxxL



   

Here we have made use of the fact that pjpi = pipj, since the pi commute with one another. Next  

   )14(2,2  iijjjjiijjii pxipxpxpxppxxL   

Now according to (12) 

        )15(3,, 332211,  ipxpxpxpx jj  

Hence we obtain  

)16(2  iijjiijjii pxipxpxppxxL   

When expressed in more conventional vector notation the above expression becomes  

   
22 2 2 . . 17L r p r p i r p   
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Note that if we had attempted to derive the above expression directly from equation (5) using 

standard vector identities then we would have the final term on the right hand side. This term 

originates from the lack of commutation between the xi and pi operators in quantum mechanics. 

Of course standard vector analysis assumes that all terms commute with one another.  

Equation (17) can be rearranged to give  

   
22 2 2. . 18p r r p i r p L     

  

   
  

Now 

 . 19rr p rp i r
r


   



 
  

where use has been made of equation (4) Hence we obtain  

)20(
11

22

2
22 
































r

L

rrr
r

rr
p


  

 Finally the above equation can be combined with equation (2) to give the following expression 

for the Hamiltonian:  

 21)(
2

2 22

2

2

22



















 rV

r

L

rrrm
H





 Let us now consider whether the above Hamiltonian commutes with the angular momentum 

operators Lz and L
2
. Recall that Lz and L

2
 are represented as differential operators which depend 

solely on the angular spherical polar co ordinates,  and  and do not contain the radial polar co 

ordinates r. thus any function of r or any differential operator involving r (but not  and ) will 

automatically commutes with L
2
and Lz . Moreover L

2
 commutes both with itself and with Lz it is 

therefore clear that the above Hamiltonian commutes with both Lz and L
2
  

Now if two operators commute with one another then they possess simultaneous eigenstates. We 

thus conclude that for a particle moving in a central potential the eigenstates of the Hamiltonian 

are simultaneous eigenstates of Lz and L
2
. Now we have already found the simultaneous 

eigenstates of Lz and L
2
 they are the spherical harmonics Yl,m(,) it follows that the spherical 

harmonics are also eigenstates of the Hamiltonian. This observation leads us to the following 

separable form for the stationary wavefunction  

       22,,, ,   mlYrRr  

It immediately follows from the fact that Lz and L
2
 both obviously commute with R(r) that  
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   241

23

22 











llL

mLz
 

Recall that the quantum numbers m and l are restricted to take certain values  

Finally making use of equation (1), (21) and (24) we obtain the following differential equation 

which determines the radial variation of the stationary wave function. 

 
 25

1
2

2
,,,22

22








 
 lnlnln REVRR

r

ll

dr

d

dr

d

m


 

Here we have labeled the function R(r) by two quantum numbers n and l. the second quantum 

number l is of course related to the eigenvalues of L
2
. [Note that azimuthal quantum number m 

does not appear in the above equation, and therefore does not influence either the function R(r) 

or the energy E] As we shall see the first quantum number n is determined by the constant that 

the radial wave function de square integrable.  

8.3 Infinite spherical potential    

Consider a particle of mass m and energy E > 0 moving in the following simple central potential  

 26
00

)( 









otherwise

arfor
rV   

Clearly the wave function  is only non –zero in the region ar 0  within this region it is 

subjected to the physical boundary conditions that it be well behaved (i.e., square integrable) at 

r=0 and that it be zero at r=a writing the wave function in the standard form  

       27,,, ,,   mlln YrRr  

We deduce that the radial function  rR ln,  satisfies  

 280
)1(2

,2

2,

2

,

2








 
 ln

lnln
R

r

ll
k

dr

dR

rdr

Rd
 

In the region ar 0  where  

 29
2

2

2 


mE
k  

Defining the scaled radial variable z = kr, the above differential equation can be transformed into 

the standard form  

 
2

, ,
,2 2

2 ( 1)
1 0 30

n l n l
n l

d R dR l l
R

z dzdz z
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Figure (1) 

The above figure (1) shows the first few spherical Bessel function. The solid short dashed long-

dashed and dot- dashed curves shows jo(z), j1(z), y0(z), and y1(z) respectively  

The two independent solutions to this well known second order differential equation are called 

spherical Bessel function and can be written  

   

   

0

1

1 sin
31

1 cos
32

sin
( ) (33)

sin cos
( )

l
l

l

l
l

l

d z
j z z

z dz z

d z
y z z

z dz z

Thus the first fewspherical Bessel functions takethe form

z
j z

z

z z
j z

z z

   
      

   

   
      

   

   

    

 

0

1 2

34

cos
( ) (35)

cos sin
( ) 36

z
y z

z

z z
y z

zz



  

   

 

These functions are also plotted in fig (1). It can be seen that the spherical Bessel functions are 

oscillatory in nature passing through zero many times. However the yl(z) functions are badly 

behaved (i.e., they are not square integrable) at z=0 whereas the jl(z) 

Table 1: First few zeros of the spherical Bessel function jl(z) 
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function are well behaved everywhere. It follows from our boundary condition at r=0 that the 

yl(z) are unphysical and that radial wave function Rn,l(r) is thus proportional to jl(k,r) only. In 

order to satisfy the boundary condition at r=a [ i.e Rn,l(a)=0] value of k must be chosen such that 

z=ka corresponding to one of the zeros of jl(z). Let us denote the nth zero of jl(z) as zn,l it follows 

that  

 , 37n lka z                             

for n=1,2,3….. 

Hence from (29) the allowed energy levels are  

 38
2 2

2
2

,, 
ma

zE lnln


 

The first values of zn,l are listed in Table (1) it can be seen that zn,l is an increasing function of 

both n and l . 

We now in a position to interpret the three quantum numbers-n,1 and m- which determine the 

form of the wave function specified in Equation (27) The azimuthal quantum number m 

determines the number of nodes in the wave function as the azimuthal angle  varies between 0 

and 2. Thus m=0 corresponds to no nodes, m=1 to single node m=2 to two nodes etc, Likewise 

the polar quantum number l determines the number n determines the number of node in the wave 

function as the polar angle  varies between 0 and . Again l=0 corresponds to no nodes l=1 to a 

single node, etc. finally the radial variable r varies between 0 and 1 (not counting any nodes at 

r=0 or r=a). Thus n=1 corresponds to no nodes n=2 to a single node n=3 to two nodes etc. Note 

that for the case of an infinite potential well the only restrictions on the values that the various 

quantum numbers can take are that n must be positive integer, l must be a non negative integer 

and m must be an integer lying between –l and l. Note further that the allowed energy levels (38) 

only depend on the values of the quantum numbers n and l. finally it is easily demonstrated that 

the spherical Bessel functions are mutually orthogonal. 

     390// 2

,
0

,  drrarzjarzj lnl

a

lnl   

When nn
1
 Given that the Yl,m (,) are mutually orthogonal this ensure that wave function (27) 

corresponding to distinct sets of values of the quantum numbers n, l and m are mutually 

orthogonal.  
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8.4 The Hydrogen atom: 

A hydrogen atom consists of an electron of charge –e and mass me and a proton of charge +e and 

mass mp moving in the Coulomb potential  

 
2

0

( ) 40
4

e
V r

e r
    

where r


 is the position vector of the electron with respect to the proton. Now this two-body 

problem can be converted into an equivalent one-body problem. In the latter problem, a particle 

of mass  

 41



pe

pe

mm

mm
  

Moves in the central potential  

 42
4

)(
0

2


re

e
rV


 

Note however that since me/mp1/1836 the difference between me and  is very small. Hence in 

the following, we shall write neglect this difference entirely.  

Writing the wave function in the usual form  

       43,,, ,,   mlln YrRr  

Also the radial function  rR ln,  satisfies  

 
 440

4

12

2
,

0

2

,22

22






















 
 lnln

e

RE
r

e
R

r

ll

dr

d

rdr

d
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Let r=a z ; with  

 
 45

2
0

0
2




 a
E

E

Em
a

e


 

where Eo and a0 are defined in equation (57) and (58) respectively. Here it is assumed that E<0, 

since we are only interested in bound states of the hydrogen atom. The above differential 

equation transforms to  
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)47(2
4

2

)46(01
)1(2

0

2

0
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,22
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E

Eaem

where

R
zz

ll

dz

d

zdz

d

e

ln






 

Suppose that Rn,l(r)=Z(r/a) exp(-r/a). It follows that  

)48(0
)1(

2
22

2












 Z

zz

ll

dz

d

dz

d 
 

We now need to solve the above differential equation in the domain z=0 to z= subjected to the 

constraint that Rn,l(r) be square integrable.  

Let us look for a power law solution of the form  

 
k

k

k zczZ )49()(  

Substituting this solution into equation (48), we obtain  

      

k

kkkk

k zzllkzzkkc 0121 1212   

Equating the coefficients of z
k-2

 gives the recursion relation  

         51211 1   lkcllkkc kk  

Now the power series (49) must terminates at small k at some positive value of k otherwise Z(z) 

behaves unphysically as z0 [i.e., it yields an Rn,l(r)that is not square integrable as r0]. From 

the above recursion relation this is only possible if [kmin (kmin-1)-l(l+1)]=0, where the first term in 

the series is min

min

k
kC z . There are two possibilities: kmin = -l or kmin=l+1. However the former 

possibility predicts unphysical behavior of Z(z) at z=0. Thus we conclude that kmin =l+1. Note 

that since  
 

   ,

Z r / a
R r

r / a

l

n l
r

a
  at small r, there is a finite probability of finding the 

electron at the nucleus for an l =0 state, whereas there is zero probability of finding the electron 

at the nucleus for an l >0 state [i.e.,  ||
2
 =0 at r=0 except when l=0].  

For large values of z, the ratio of successive co efficients in the power series (49) is  

 52
2

1


 kc

c

k

k  

According to (51) this is the same as the ratio of successive co efficients in the power series  
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)53(

!

2


k

k

k

z
 

which converges to exp(2z). We conclude that Z (z)exp(2z) as z. It thus follows that 

 
( / ) ( / )

, ( )
( / ) ( / )

r a r a

n l

e erR r Z
a r a r a

 
  

 

 as r. This does not correspond to physically acceptable 

behavior of the wave function since  ||
2
 dV must be finite. The only way in which we can avoid 

this un physical behavior is if the power series terminates at some maximum value of k. 

according to the recursion relation this is only possible if  

)54(
2

 n


 

where n is an integer and the last term in the series is cnz
n
. Since the first term in the series is   

cl+1 z
l+1

, it follows that n must be greater than l otherwise there are no terms in the series at all. 

Finally it is clear from equation (47) and (54) that  

 

 58103.5
4
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em

a
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a

eem
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where

naa

and

n

E
E

e

e









 

Here E0 is the energy of so called ground state (or lowest energy state) of the hydrogen atom and 

the length a0 is known as the Bohr radius. Note that |E0|
2
 mec

2
, where =e

2
/(40  c)1/137 is 

the dimensionless fine structure constant. The fact that 2

0 cmE e  is the ultimate justification 

for our non relativistic treatment of the hydrogen atom. 

We conclude that the wave function of a hydrogen atom takes the form  

    )59(),(,, ,,,,   mllnmln YrRr  

Here the Yl,m(,) are the spherical harmonics and Rn,l(z=r/a) is the solution of  
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 6001
2)1(1
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 lnR

z

n

z

ll

dz

d
z

dz
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z
 

which varies as z
l
 at small z. Furthermore the quantum number n, l and m can only take values 

which satisfy the inequality  

 62 nlm  

Where n is a positive, l is a non negative integer and m an integer  

Now, we expect the stationary states of the hydrogen atom to be orthonormal: i.e.,  

 *
, , , , 62n l m n l m nn u mmdV            

Where dV is a volume element and the integral is over all space. Of course dV= r
2
 dr d, where 

d, is an element of solid angle. More over we already know that the spherical harmonics are 

orthonormal i.e.,  

*
, , ' ' (63)l m l m ll mmY Y d       

It thus follow that the radial wave function satisfies the orthonormality constraint  

 * 2
, ,

0

64n l n l nnR R r dr 


    

 

Figure (2) The   plottedrRra lno

2

,

2
as a function of r/a0. The solid short-dashed, and long-dashed curves 

correspond to n, l=1, 0, and 2,0 and 2,1 respectively  

 

 

The first few radial wave functions for the hydrogen atom are listed below  
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These function are illustrated in figure (2) and (3)  

Given the (properly normalized) hydrogen wave function (59) plus our interpretation of ||
2
 as a 

probability density we can calculate  

 
22

,

0

(71)k k
n lr r R r dr


   

 

Figure 3: the a0 r
2  

2

, rR ln  plotted as a function of r/a0. The solid short-dashed and long-dashed curves correspond to 

n,l=3,0 and 3,1 and 3,2 respectively  

 

where the angle brackets denote an expectation value. For instance it can be demonstrated (after 

much tedious algebra) that  
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According to equation (55) the energy levels of the bound states of a hydrogen atom only depend 

on the radial quantum number n. it turns out that this is a special property of a 1/r potential. For a 

general central potential V( r) the quantized energy levels of a bound- state depends on both n 

and l.  

Fact that the energy levels of a hydrogen atom only depends on n and not on l and m implies that 

the energy spectrum of a hydrogen atom is highly degenerate: i.e., there are many different states 

which possess the same energy. According to the inequality (61) ( and the fact that n,l and m are 

integers) fro a given value of l there are 2l+l different allowed values of m (i.e., –l,-l+1…..l-l,l). 

Likewise for a given value of n there are n different allowed values of l (i.e., 0, 1,……….., n-1). 

Now all states possessing the same value of n have the same energy (i.e., they are degenerate). 

Hence the total number of degenerate states corresponding to a given value of n is  

1+3+5+---------------+2(n-1)+1=n
2
-----------------------------(77) 

Thus the ground state (n=1) is not degenerate the first excited state (n=2) is four fold degenerate 

the second excited state (n=3) is nine- fold degenerate etc. [Actually when we take into account 

the two spin states of an electron the degeneracy of the n
th

 energy level becomes 2n
2
]. 

The eigen functions (r,,) depend on three quantum numbers: n,l,m. We give below some of 

these normalized function obtained by combining the expressions for  , ( ) :m

j nlY and R r   
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Fig 4 shows the radial dependence of the wave function for the few energy levels, while the 

angular dependence is shown in fig 5. In every direction (,) we calculate  
2

,m

ly   ; we thus 

obtain a surface of revolution around the z-axis. For l=0 this surface is a sphere with O as centre; 

but becomes more complex for higher values of l. 

 

  Fig. 4      Fig.5     

8.5 Let us sum up  

We have understood the following concepts: the central potential, the radial equation wave 

equation in case of hydrogen atom, The method of solving the equation in case of hydrogen atom 

the eigen function and eigen values in case of hydrogen atom. 
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8.6 Key words 

Central potential, spherically symmetric potential, radial equation, hydrogen atom wave 

equation. 

8.7 Question for self study  

What is meant by central potential? 

What is meant by radial equation? 

Write down the wave equation in case of hydrogen atom? 

Discuss the method of solving the wave equation in case of hydrogen atom? 

Discuss the eigen functions and eigen values in case of hydrogen atom? 
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Unit-9: Rotation and angular momentum commutations relations, Spin ½ system and finite 

rotations  

 

Structure: 

9.0 Objectives 

9.1 Introduction  

9.2 Contents of the Unit: 

9.2.1. Rotations and angular momentum commutation relations 

9.2.2. Spin ½ system and finite rotations  

9.2.3. Commutation relations of angular momentum with components 

9.2.4. Ladder Operators J+ and J-  

9.3 Let us sum up  

9.4 Key words 

9.5 Question for Self study  

9.6 References for further study 

 

 

9.0 Objectives: 

After studying this unit you will be able to understand  

 Rotations of angular momentum.  

 Commutation relation. 

 Spin ½ systems and  

 Finite rotations  

9.1 Introduction  

The study of angular momentum and related topics is very important in modular physics. It is 

essential to understand angular momentum to understand molecular, atomic and nuclear 

spectroscopy: angular momentum considerations play an important role in scattering and 
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collision problems as well as in boundary state problems further more angular momentum 

concepts have important generalizations iso-spin in nuclear physics Su(3), SU(2) and U(1) in 

particle physics and so on. 

9.2 Contents of the Unit: 

a. Rotations and angular momentum commutation relations. 

i) Finite versus infinitesimal rotations  

ii) Infinite rotation in QM 

b. Spin ½ system and finite rotations. 

9.2.1. Rotations and angular momentum commutation relations:- 

i) Finite Versus infinitesimal rotations: 

We recall from elementary physics that rotations about the same axis commute, where as 

rotations about different axis followed by a 60

 rotation about the same z-axis is obviously 

equivalent to a 60

  rotation followed by a 30


 rotation both 90

0
 rotation about the z-axis denoted 

by Rz(/2) followed by a 90
0
 rotation about the x-axis denoted by Rx(/2) compare this with a 

90
0
 rotation about the x-axis followed by a 90

0
 rotation about the z-axis. The net results are 

different as shown in the figure  

 

First we have rotations out quantitatively the manner in which rotations about different axis 

fail to commute. Let us first see how to represent rotation in three dimensions by 3 X 3 real, 
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orthogonal matrices. Consider a vector V with components Vx,Vy,Vz. When we rotate the three 

components becomes some other set of numbers ' ' ',x y zV V andV . The old and new components are 

related via a 3 X 3 orthogonal matrix R. 

 

'

'

'

(1 )

1 (1 )

x x

y y

z z

T T

V V

V R V a

V V

RR R R b

   
   
             
   
   
   

            

 

where the superscript T stands for a transpose of matrix. It is a property of orthogonal 

matrices that  

2 2 2 '2 '2 '2 (2)x y z x y zV V V V V V       

is automatically satisfied  

To be definite, we consider a rotation about the z-axis by angle. The convention we follow 

throughout our discussion is that a rotation operation affects a physical system itself as in the 

above fig while the coordinate axis remains unchanged. The angle  is taken to be positive (+
ve

) 

when the rotation in question is counter clockwise in the x-y plane as viewed from the positive -

side. If we associate a right handed screw with such a rotation, a +ve - rotation around the z-

axis means that the screw is advancing in the +ve z-direction with this convention we easily 

verify that  

   

cos sin 0

sin cos 0 3

0 0 1

inf

z

z

R

If we want to write an initesimal formof R
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2

2

1 0
2

1 0 (4)
2

0 0 1

zR

 
  

 
 

     
 
 
 
 
 

 

 

   

3

2

2

2

2

.

1 0 0

( ) 1 1 5
2

0 1
2

1 0
2

0 1 0 5

0 1
2

x

y

Where terms of order E and higher are ignored Likewise we have

R a

and

R b

 
 
 

 
     

 
 

  
 

 
  

 
   
 

 
  

 

  

which may be read from equation (4) by cyclic permutations of x,y,z that is xy, yz, zx. 

Let us now compare the effect of a y-axis rotation followed by an x-axis rotation with that of an 

x-axis rotation with that of an x-axis rotation followed by a y-axis rotation elementary matrix 

manipulations lead to  

 

2

2
2

2

1 0
2

( ) ( ) 1 6
2

1
2

x yR R a

 
  

 
 

       
 
 
   
 
 

 

and  
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2
2

2

1
2

0 1 6
2

1

y xR R b

 
   

 
 

      
 
   
 
 
 

 

From (6a) and (6b) we have the first important result; infinitesimal rotations about different 

axes do commute if terms of order 
2
 and higher are ignored. The second and even more 

important result concerns the manner in which rotations about different axis fail to commute 

when terms of order 
2
 are kept  

     

   

2

2

2

0 0

( ) 0 0

0 0 0

1 7

x y y x

z

R R R R

R

 
 
       
 
 
 

   

 

where all terms of order higher than 
2 have been ignored throughout  this derivation. We 

also have  

1=Rany(0)----------------------------------------------------(8) 

where ‗any‘ stands for any rotation axis. Thus the final result can be written as  

           2( ) 0 9x y y x anyR R R R R R          

This is an example of the commutation relations between rotation operations about different 

axis which we will use later in deducing the angular momentum commutation relations in 

quantum mechanics. 
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ii. Infinitesimal rotations in Quantum Mechanics: 

So far we have not used quantum mechanical concepts. The matrix R is just a 3X3 

orthogonal matrix acting on a vector V written in column matrix form. We must now understand 

how to characterize rotations in Quantum Mechanics. 

Because rotation affects physical systems, the state ket corresponding to a rotated system is 

expected to look different from the state ket corresponding to the original unrotated system. 

Given a rotation operation R characterized by a 3X3 orthogonal matrix R, we associate an 

operator D(R) in the appropriate ket space such that  

 ( ) 10
R

D R            

Where 
R

and  stand for the kets of the rotated and original system respectively. Note 

that the 3X3 orthogonal matrix R acts on a column matrix made up of the three components of a 

classical vector, while the operator D(R) acts on state vector in ket space. The matrix 

representation of D(R), which we will study in great detail in the subsequent sections, depends 

on the dimensionality N of the particular ket space in question. For N=2 appropriate for 

describing a spin ½ system with no other degree of freedom, D(R) is represented by a 2X2 

matrix. For a spin 1 system, the appropriate is a 3X3 unitary matrix and so on.  

To construct the rotation operator D(R) it is again fruitful to examine first its properties under 

an infinitesimal rotation. We can almost guess how we must proceed by analogy. In both 

translations and time evolution, the appropriate infinitesimal operator could be written as  

 

 

1 11

.

, ' 12x

U iG

with a Hermitian operator G Specifically

p
G dx

   

  


  

For an infinitesimal displacement 'dx  in the x-direction  

 , 13
H

G dt  
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For an infinitesimal time evolution with time displacement dt. We know from classical 

mechanics that angular momentum is the generator of rotation in much the same way as 

momentum and Hamiltonian are the translation and time evolution, respectively. We therefore 

define the angular momentum operator Jk in such a way that the operator for an infinitesimal 

rotation around the k
th

 axis by angle d can be obtained by letting  

, (14)kJ
G d  


 

in eqn (11) with Jk taken to be Hermitian, the infinitesimal rotation operator is guaranteed to be 

unitary and reduces to the identity operator in the limit d0. More generally, we have,  

   
ˆ.

ˆ, 1 15
J n

D n d i d 
 

   
 




 

for a rotation about the direction characterized by a unit vector n̂ by an infinitesimal angle d. 

A finite rotation can be obtained by compounding successively infinitesimal rotations about the 

same axis. For instance, if we are interested in a finite rotation about the z-axis by angle  we 

consider  

 

2 2

2

lim 1

exp

1 (16)
2

N

z
z

N

z

z z

J
D i

N

iJ

iJ J






 



   
     

   

 
  

 

    





 

 

In order to obtain the angular momentum commutation relations, we need one more concept. As 

considered earlier for every rotation R represented by a 3X3 orthogonal matrix R there exits a 

rotation operator D(R) in the appropriate ket space we further postulate that D(R) has the same 

group properties as R; 
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1 2 3 1 2 3

1 1

1 1

1 2 3 1 2 3 1 2 3

1 2 3

1 2

: .1 ( ).1 ( ) (17 )

: ( ) 17

: 1 ( ) 1 17

1 ( ) ( ) 1

: ( ) (17 )

( )

Identity R R D R D R a

Closure R R R D R D R D R b

Inverse RR D R D R c

R R D R D R

Associativity R R R R R R R R R d

D R D R D R

D R D R

 

 

        

    

       

  

     

   

  

     

3

1 2 3

D R

D R D R D R

  



 

Let us now return to the fundamental commutation relations for rotation operations (9) written in 

terms of the R matrices. Its rotation operator analogue would read  

 

2 2 2 22 2 2 2

2 2 2 2

2

1 1 1 1
2 2 2 2

1 1 18

y y y yx x x x

z

iJ J iJ JiJ J iJ J

iJ

            
                 

      


                  

       



 

Terms of order  automatically drop out equating terms of order 
2
 on both sides of (18) we 

obtain  

, (19)x y zJ J i J         

Repeating this kind of argument with stations about other axis we obtain 

 , 20i j ijk kJ J i J       known as the fundamental commutation relations of angular 

momentum.  

9.2.2. Spin ½ system and finite rotations  

Rotations operator for Spin -1/2  

The above number, N of dimensions in which the angular momentum commutation relations (20) 

are realized is N=2.  

The operators for Sx, Sy, and Sz are defined by  
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2

2

21
2

x

y

z

S

i
S

S

 
      
 

 
       
 

 
       
 







 

satisfy commutation relations (20) with Jk replaced by Sk. It is not a priori obvious that nature 

takes advantage of the lowest dimensional realization of equation (20) but numerous 

experiments- from atomic spectroscopy to nuclear magnetic resonance, suffice to convince us 

that this is in fact the case.  

Consider a rotation by a finite angle  about the z-axis. If the ket of a spin ½ system before 

rotation is given by  the ket after rotation is given by  

   

   

22

exp 23

zR

z
z

D

with

iS
D

  




               

 
              

 

 

To see that this operator really rotates the physical system, let us see its effect on <Sx> under 

rotation this expectation value changes as follows  

     

 

| | | | 24

exp exp 25

x R x z x zR

z z
x

S S D S D

we must thereforecompute

iS iS
S

     

 

  

   
                    

    

 

 

Let us evaluate this in two ways:  

Derivation 1:- Here we use the specific form of Sz given by (21). We then obtain for (25) 

    

 

         

2 2 /2 2

exp exp
2

2

cos sin
2

cos sin (26)

z z

i i i i

x y

iS is

e e e e

i

S S
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Derivation 2:- Alternatively we many use formula  

       

 

2 2

exp exp , , ,
2!

, , ,........ , (25)
!

n n

i
iG A iG A i G A G G A

i
G G G G A

n


  



 
        

 

 
              

 

 

To evaluate eqn (25) 

2

,

2 3

, ,

2 3

exp exp

1 1
, ,

2! 3!

1
2! 3!

y

y

x

z z
x x z x

i S

z z x z z z x

i S

S

x y

iS iS i
S S S S

i i
S S S S S S S

S S

  

 

 


     
         

    

 
                                   

  

 
              

 







  

 


 cos sin 27x yS S 

 
     

 

               

 

Notice that in derivation (2) we used only the commutation relations for Si. So this method can be 

generalized to rotations of systems with angular momentum higher than ½. 

For spin ½ both methods give  

 | | cos sin 28x R x x yR
S S S S        

where the expectation value without subscripts is understood to be taken w.r.t the unrotated 

system.  

Similarly  

 cos sin 29y y xS S S     

As for the expectation value of Sz, there is no change because Sz commutes with Dz(). 

 30z zS S       

Relations (28), (29) and (30) are quite reasonable. They show that rotation operator (23) when 

applied to the state ket does rotate the expectation value of S around the z-axis by angle . In 

other words, the expectation value of the spin operator behaves as though it were a classical 

vector under rotation. 

 . 31k k l l

l

S R S       
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where Rkl are the elements of the 3X3 orthogonal matrix R that specifies the rotation in question. 

It should be clear from our derivation (2) that this property is not restricted to the spin operator of 

spin ½ systems. In general we have, 

 . 32k k l l

l

J R J        

Under rotation where Jk are the generators of rotations satisfying the angular momentum 

commutation relations (20). 

 

9.2.3. Commutation relations of angular momentum with components:- 

The total angular momentum is defined by  

 2 2 2 2 33x y zJ J J J              

We can derive the commutation relation of J
2
 with components Jx, Jy, Jz  

Let us take  

 

   

   

2 2 2 2

2 2 2

2
,

2 2 2

, ,

, ,

, , , (34)

, [ , ] ,

, ,

0

, , ,

x x y z x

x x y x z x

x x x x x x x x x x x

x y x z x

y y x y x y z

J J J J J J

J J J J J J

We know that ab c a b c a c b

So J J J J J J J J J J J

J J J J J J

J J J J J J J
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2

2

,

( )

0

, 0 35

, 0 36

, 0 37

x x z x z

y z z y z y y z

x

y

z

J J J J J

J i J i J J J i J i J J

J J

J J

J J



     



   
 

    
 

    
 

   

 

 

9.2.4.Ladder Operators J+ and J- : 

Now, let us define the new operators  
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 38
x y

x y

J J iJ

J J iJ





  
            

  

 

Commutation relation of Jz with J+ and J-  

 

 

 

  

 

, ,

, ,

, ,

, ,

sin ,

39

z z x y

z x z y z x y z

y x

z x y y z y y z x

y x x y

J J J J iJ

J J i J J J J i J J

i J i i J

ce J J i J and J J i J and J J i J

i J J J iJ

J





   

           

 

        

     

 

 

  

  



 

And similarly, 

 

 

 

, ,

,

40

z z x y

z
x

x

y x

J J J J iJ

J
i i J

J

i J J

J





   

 
   
 

 

                



 



 

Or we can write (39) and (40) in compact form as  

 

 

 

 

 

,

, (41)

,

, , , ,

0 , , 0

2 , 2

2 42

z

x y x y

x x x y y x y y

x y x y

x y z

z

J J J

J J J iJ J iJ

J J J J i J J J J

i J J i J J

i J J i i J

J

 

 

 

    

             

          

     

   







 

Commutation relations of J
2
 with J+ and J-  

2 2

2 2

2

, ,

, ,

, 0 0 0 (43)

x y

x y

J J J J iJ

J J i J J

J J
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2 2

2 2

2

, ,

, , 0 (44)

43 44

, 0 45

x y

x y

Similarly J J J J iJ

J J i J J

Combining in we have

J J





       

        

                      

 

 

9.3 Let us sum up  

So we have learnt the rotations of angular momentum commutation relations, spin ½ systems and 

some more commutation relations of angular momentum components. 

 

9.4 Key words 

Angular momentum, spin, commutation relation, rotations.  

 

9.5 Question for Self study  

1. Discuss the rotations of angular momentum? 

2. Explain infinitesimal rotations QM? 

3. Discuss the rotations of spin -1/2 system? 

4. P.T [J
2
 , Jx] =0 

5. Evaluate the brackets [Jz J], [J+,J-] and  [J
2
,J]. 

 

9.6 References for further study: 

 Modern Quantum Mechanics by J.J.Sakurai, Addison Wesley Publications. 
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Unit-10: Eigen values and Eigen states of angular momentum.  

 

Structure: 

10.0 Objectives 

10.1 Introduction 

10.2 Contents: 

(a) Eigen values of J
2
 and Jz 

(b) Eigen values of J+ and J- 

(c) Eigen Values of Jx and Jy  

(d) Explicit form of the angular momentum matrices. 

(e) Eigen functions of J
2
 and Jz . 

10.3 Let us sum up 

10. 4 Questions for self study: 

 

10.5 References for further study 
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10.0 Objectives:  

 

After studying this unit you will be able to understand  

 The Eigen values of J
2
 and Jz. 

 Matrix elements of Angular momentum operators. 

 Eigen functions of J
2
 and Jz 

 

10.1 Introduction 

Till now we have discussed angular momentum rotations and its commutation relations. Now we 

will see what are the eigenvalues and eigenfunctions of J
2
 and Jz and derive the expression for 

matrix elements of angular momentum operators while are first obtained in 1926 by M.Born, W 

Heisenberg and P. Jordan. 

 

10.2 Contents: 

(a) Eigen values of J
2
 and Jz 

(b) Eigen values of J+ and J- 

(c) Eigen Values of Jx and Jy  

(d) Explicit form of the angular momentum matrices. 

(e) Eigen functions of J
2
 and Jz . 

 

a) Eigen values of J
2
 and Jz: 

As J
2
 and Jz commutate, they possess simultaneous Eigen functions. If a and b are Eigen values 

of operators J
2
 and Jz in the state    then Eigen value equation of J

2
 and Jz in the state    are  

)2(

)1(2









bJ

aJ

z

 

Now let us operate by ladder operators J+=Jx+iJy and J-=Jx-iJy , then we have  
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,

,

. ., (3)

z z

z z z

z

z z

z

JzJ J J J J

Since J J J J J J

J J J b

J J b

Since J J J and J b

i e J J b J

 

 

 

 

 

  

  

 

 

 

 

   

    

 

 

 

  







 

This equation shows that J+ has eigen value (b+  ) in the state J+   . Thus the operation of J+ on 

 increase the eigen value of J+ by an amount   

Operating again by J+ on J+   then we have  

J+ J+ |> =J+
2
|> 

 

 

  

 

 

2
z z + +

z

2

2

2

So that J J | =J J J

J ,

( ) sin (3)

2 (4)

z

z

z

J J J J

J J J J

J J J J

J J b J u g

b J

 





 

 





  

  

  

  







 

 

  

  





 



 

This equation shows that Jz has a eigen value (b+2  ) in the state 2

J . Thus the operator of J+ 

on   each time simply means the increase in eigen value of Jz by   each time. Hence in 

general we may write  

  )5(   nn

z JnbJJ   

And similarly for J- operator we write  

  )6(   nn

z JnbJJ   

These two equations show that there is a discrete spectrum for the eigen values of JZ depending 

on the integer n. The eigen values are   

n=-n,…….n=-2, n=-1, n=0, n=1, n=2………..n = n  

         ........... 2 , , , ...............b n b b b b b n          

Thus we see that as n tends from -∞ to +∞, the eigen values of Jz tend from -∞ to ∞. 
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As angular momentum of a system is finite, therefore eigenvalues of J
2
 is finite i.e a is finite  

2222

zyx JJJJ   

i.e., 22 JJ z  therefore the eigen values of Jz must be finite and hence terminated after certain 

terms so that inequality 22 JJ z  may hold good. Hence we terminate this series of eigen values 

like  

1 10 0 (7)l k
z zJ J and J J  

     

i.e., maximum and minimum values of integers are l and k respectively defined by (7) 

Therefore the eigen values of Jz are restricted to the region  

n=-k,………..n=-1, n=0, n=1…….n = l. 

       ................ , , ...........b k b b b b l       

Now we have  

    
 

)8(

,

22

22

22

aJJJJJ

JiiJJJJor

JJiJJiJJiJJJJ

iJJJiJJJ

zyx

zyx

yxyxyxyx

yxyx




















 

Similarly if we start with J+J- we get  

 

2 2

2 2 2 2 2 2 2

2

2 2

(8 )

( sin (8 )) (9 )

( sin (8 )) (9 )

x y z

x y z x y z

z z

z z

J J J J J b

J J J J J J J

J J J J u g a a

J J J J J u g b b

 

 

 

   

     

   

   







 

Now let us find eigen values of J
2
 in terms of Jz  

Since [Jz,J
2
]=0. Therefore Jz and J

2
 have the same eigen function i.e., if |lJ   is an eigen 

function of Jz , it will be also for J
2
  

 2 2

2

l l
z z

l l l
z z

Hence J J J J J J J

J J J J J J J

 

  

   

    

  

  




 

Using equation (5) and (7)  
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2 1

(10)

l l l
z z

l

l

J J J J J J J

b l b l b l J

b l b l J

  






   





 

     

   

   

  

 

This equation gives the eigen values for J
2
  

 

    
  

2

2
0

(11)

k k
z z

k

k

Again J J J J J J J

b k b k J

b k b k J

 






   





  

    

    



  

  

  

Equating two eigen values given by (10) and (11) of J
2
, which represent eigen values of ―a‖, 

We have, 

      (12)a b l b l b l b k                         

Solving for b we get  
2

b k l 


 

And therefore from (12), we have  

 2 1
2 2

k lk l
a

  
   

  
  

where 
2

k l 
 
 

 and 
2

k l 
 
 

are necessarily integers. 

Now we substitute
2

k l
j

 
 

 
; so that  

 

 

21

2

a j j

b k l

 



  




  

Since 
2

k l
j

 
 

 
; thus 

max min

max min

2 ; 0

2 ; 0

K j K

l j l

  


  
 

Therefore when max min2 , 0k k j l l    ; we have maxj j  

and when min max0, 2k k l l j    ; we have minj j   

Thus eigen values b may be expressed as  
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 , 1 ,.......2 , ,0, , 2 ,........( 1) , (15)j j j j             

Therefore Jz have eigen values from  jtoj  , i.e., the total values are (2j+1). Thus we define 

b = mz. Where mz have these all (2j+1) values and it is called magnetic quantum number  

Hence eigen values of J
2
 and  Jz are respectively; 

  2

2

1
(16)

z

j j

and m

 







 

Equation (16) represents the eigen values of J
2
 and Jz. The matrix elements of Jz which is 

diagonal in above representation are determined by equation  

   ( )z zJ jm m jm whence if jm   are normalized.   

    

jjmmz

mz

m

jJzmjjmJmj











|

 

 

(b) Eigen values of J+ and J-: 

If we represent a state function  mjr ,,  where j and m are angular and magnetic quantum 

number respectively then eigen value equation of operator J+ is  

    )17(1,,,,   mjrNmjrJ   

Where N± is eigen value of J±, J+ being is raising and J- the lowering operator 

We have;    1,,,, ****   mjrNmjrJ   

So that  

       

   

      mjrmjrJJJ
N

mjrmjrJJ
N

mjrJmjrJ
NN

mjrmjr

zz ,,,,
||

1

,,,,
||

1

,,,,
1

1,,1,,

2

2

2

**





































 

Now applying normalization condition  

* 1d

we get
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   2

2

1
1 1

| |
z zj j m m

N

    
 

    

 ( 1) 1 (18)i
Z zor N j j m m e 

       

where  is arbitrary real number and is phase factor. Thus we have some useful derivation from 

(17) and (18) by taking e
i

=1. 

From (17),    1,,,,  

 mjrNmjrJ   

Then the equation (17) becomes  

   

     

( , , ) ( 1) 1 , , 1 (19)

, , ( 1) 1 , , 1 (20)

z z

z z

J r j m j j m m r j m

J r j m j j m m r j m

 

 





     

       




 

or in more simplified form (19) and (14) can be written as 

   

     

( ) ( ) 1 , 1 (21)

( ) 1 , 1 (22)

J jm j m j m j m

J jm j m j m j m

 

 





        

       




 

The matrix elements of J+ and J- are 

 

 

 

' ' 1

' ' 1

' ' | ' ' 1 )( 1 (23)

' ' | )( 1

;

' ' | )( 1 (24)

jj m m

jj m m

j m J jm j m jm j m j m

or j m J jm j m j m

Similarly

j m J jm j m j m

 

 



 

 

              

   

                






                                             

 

(c) Eigen values of Jx ang Jy: 

The matrix elements or eigen values of Jx and jy can be determined by following equation  

 

   
 

,

1

2
25

1 1

2 2

x y

x y

x

y

J J iJ

J J iJ

Hence

J J J

J J J i J J
i
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' ' 1

' ' 1

1
' ' | ' ' | |

2

1
' ' |

2

1
' ' | ' ' |

2

(23) (24)

1
' ' | 1

2

1
1 26

2

x

x j j m m

j j m m

x

and also J J

j m J jm j m J J jm

j m J J jm

j m J jm j m J jm

from equations and we get

j m J jm j m j m

j m j m

in another form

J jm

 

 



 

 

 

 







    

 

 

     

                







    

    

1
1 , 1

2

1
1 , 1 (27)

2

j m j m j m

j m j m j m





     

             





 
Similarly, the matrix elements of Jy are as follows: 

 

     ' ' 1 ' ' 1

1
' ' | ' ' | |

2

1 1
' ' | ' ' |

2 2

1 1 (28)
2 2

y

j j m m j j m m

j m J jm j m i J J jm

i j m J jm i j m J jm

i i
j m j m j m j m   

 

 

 

    

  


        

 

 

or in more simplified form  

           1 , 1 1 , 1
2 2

y

i i
J jm j m j m j m j m j m j m               

If we consider 'J J , then Eqns (26) and (28) will reduce to 

  

    

' 1

' 1

1
' | 1

2

1
1 29

2

x jj m m

jj m m

jm J jm j m j m

j m j m

 

 





     

      





 

and 

 

  

  

' 1

' 1

' | 1
2

1
2

y jj m m

jj m m

i
jm J jm j m j m

i
j m j m
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1;jjBut then   

  

    

' 1

' 1

1
' | 1

2

1
1 30

2

x m m

m m

jm J jm j m j m

j m j m









     

      





 

' 1

' 1

' 1; 1

' 1; 1

m m

m m

If m m

and m m









  

  
 

The matrix element of Jx will be finite. But if ' 1 ' 1' 1; 0 ' 1, 0m m m mm m and m m       

and hence the matrix elements of Jx will be zero. 

Similarly, 

  

    

' 1

' 1

' | 1
2

1 31
2

y m m

m m

i
jm J jm j m j m

i
j m j m









    

    





 

If ' 1;m m  the matrix elements of Jx will be zero and if ' 1m m  , elements will be finite. 

Hence if ' 1m m   we get  

  

  

1
, 1 | 1 (32 )

2

' 1

1
, 1 | 1 (32 )

2

x m

x m

j m J j j m j m a

If m m

j m J j j m j m b

           

 

           





 

All other elements (for which ' 1,)m m  will be zero. Similarly the matrix elements of Jy can 

be written as  

    

    

' 1,

, 1| 1 33
2

' 1

, 1| 1 33
2

y

y

If m m we get

i
j m J jm j m j m a

and if m m

i
j m J jm j m j m b

 

      

 

      





 

 

 (d)Explicit form of the angular momentum matrices:  

The matrices of J
2
 and Jz are diagonal   2 21z zJ m and J j j     



 
 
 
Course MP 2.2  Block 2.2C KSOU 

153 
 

The value of magnetic quantum number mz varies from –j to +j and total values of mz will be 

(2j+1). Hence the dimensions of these diagonal matrices will be (2j+1) X (2j+1) i.e., (2j+1) rows 

and (2j+1) columns. 

 
 

 
 

2 2

0 0 0

0 1 0 0

0 0 2 0

0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

z

j

j
J

j

j

Diagonal matrix

j j

j j
J diagonal matrix

j j

j j

 
 


 
 
 

 

 
 

 
 
 

  





 

Each of matrices Jz , J
2
 has the form  

 

Hence Jz and J
2
 matrices contain only principal diagonal terms.  

The matrix elements of J+ are given by  

  

  

' ' 1

1, 1

' ' | 1

, 1| 1

sin 1; 1

jj m m

jj m m

j m J jm j m j m

The non vanishing matrix elements of J are given by

j m J jm j m j m

ce

 

 

 





 

   



    

 



  

And all other elements of J+ will be zero. m will take values depending on value of j. 

For given j; m will take values from –j to +j with a difference of 1.  
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, 1, 2, 2, 1,

, 2

,

,

z

z

z

m j j j j j j

and moreover J and J should satisfy the condition

J J J

J J J

and J J J

 

 

 

 

        





 







 

According to the matrices for J+ and J- will be of the form  

 

i.e., J+ matrix will contain only upper diagonal terms and 

 

 

That is J- matrix will contain only lower diagonal terms. 

 

Problems:  

1. Find the angular momentum matrices for 
1 3

, 1
2 2

J j and j    
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 2 2 2 2

:

1 1 1
, ,

2 2 2

1 1 3
1 1

2 2 2

Solution

i j m

J j j

  

 
     

 
  

 

Matrices with angular momentum number j is (2j+1) by (2j+1) matrices  

Here j=1/2, therefore J
2
 matrices is 2 X 2 matrix  

2 2

3
0

4

3
0

4

1 1

2 2

1 1

2 2

1
0

2

1
0

2

z z

z

z

z

J

and J m

for m

for m

J

 
 

  
 
 
 






 
  


 
 

  
  
 











 

  1

Also

J j m j m       

i.e., only upper diagonal terms appear and rest of elements is zero.  

1 1 1 1 1 1
1 ;

2 2 2 2 2 2

0

1 1 1 1 1 1
1 ;

2 2 2 2 2 2

J for j m

J for j m
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0 1

0 0

1 . .,

J

and J j m j m i e only diagonal terms appear and all the

best elements are zero





 
   

 

   



  

1 1
,

2 2

1 1
0 ,

2 2

0 0

1 0

for j m

for j m

J


 

 
   


 
  

 





 

 

2 2

1, 1,0, 1

2 0 0 1 0 0

0 2 0 , 0 0 0

0 0 2 0 0 1

0 2 0 0 0 0

0 0 2 , 2 0 0

0 0 0 0 2 0

z

ii Simialrly for j m

J J

J J 

  

   
   

 
   
      

   
   

    
   
    

 

 

 

  2 2

15
0 0 0

4

15
0 0 0

3 4
;

152
0 0 0

4

15
0 0 0

4

iii For j J

 
 
 
 
 

   
 
 
 
 
 

  

3
0 0 0

2

1
0 0 0

2

1
0 0 0

2

3
0 0 0

2

zJ
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0 0 0 00 3 0 0

0 0 2 0 3 0 0 0
;

0 2 0 00 0 0 3

0 0 0 0 0 0 3 0

J J 

   
   
   

 
   
   
      

 

 

 

(e) Eigen functions of J
2
 and Jz: 

We have seen that J
2
 and Jz commute with each other therefore the simultaneous eigen function 

of J
2
 and Jz can be constructed.  

The eigen value equation of J
2
 and Jz are  

 
 

2 1
34

z

J j j

J m

 

 

  


 




 

where m takes values from –j to +j with a difference of unity  

we have also noticed while finding the eigen values of J
2
 and Jz that the eigen function of J

2
 and 

Jz may be constructed by repeated application of operators J+ and J- where  

 
0 0

35

x y x y

j j
j j

j j
j

J J iJ and J J iJ

With the condition that

J and J

where J

 

 

 

 



   

  


   
 

10.3 Let us sum up: 

 

       This unit has dealt with very fundamental, required concepts of Quantum Mechanics like the 

eigen values and the derivation of angular momentum using  ladder operators and the eigen 

functions of these operators in detail. 

 

10. 4 Questions for self study: 

 

1. Derive the eigen values of the operators L2 and Lz. 

 

2. Express the components of angular momenta and L2 operators in spherical coordinate system.   

 

3. Obtain the eigenfunctions of  L
2
 and Lz 

 

10.5 References for further study: 

  1. Modern Quantum Mechanics by J.J.Sakurai 

  2. Introduction to Quantum Mechanics by D.J.Griffiths 

  3. Introduction to Quantum Mechanics by ArulDhas 
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Unit-11: Addition of two angular momentum Clebsch- Gordan co-efficients and their  symmetries  

Structure: 

11.0 Objectives 

11.1 Introduction 

11.2 Contents of the Unit 

 a) Addition of general angular momentum.  

 b) Clebsch- Gordan coefficient  

 c) Selection rules  

 d) Recursion relations. 

 e) Computation of Clebsch-Gordan co-efficient  

11.3 Problems 

11.4 Let us sum up 

11.5 Key words  

11.6 Question for Self study  

    11.7 References  

 

 

11.0 Objectives:  

After studying this unit you will be able to understand 

 Addition of angular momenta. 

 Clebsch Gordan coefficients (C-G coefficients) 

 Recursion relation of C-G Co-efficients  

 Examples of the addition of two angular momenta. 

11.1 Introduction  

Addition of angular momentum is very important in the study of atomic spectra, structure of nuclei etc. In 

this unit we are going to first understand the general problem of the addition of two angular momenta and 

later we are going to consider the particular examples. 
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11.2 Contents of the Unit  

a) Addition of general angular momentum.  

b) Clebsch- Gordan coefficient  

c) Selection rules  

d) Recursion relations. 

e) Computation of Clebsch-Gordan co-efficient  

a) Addition of angular momenta:  

Addition of angular momenta is very important in the study of atomic spectra, structure of nuclei. Let us 

consider two non interacting systems having angular momenta J1 and J2 and eigen kets 1 1j m and 

2 2j m  respectively. That is  

   

 

2 2
1 1 1 1 1 1 1

1 1 1 1 1 1

1 1

1z

J j m j j j m a

J j m m j m b

  

 




 

and  

   

 

2 2
2 2 2 2 2 2 2

2 2 2 2 2 2

1 2

2z

J j m j j j m a

J j m m j m b

  

 




 

where 1 1 1 1 2 2, 2 2, 1, ; 1,m j j j m j j j        

Since the two systems are non interacting, 

2 2
1, 2 1 20 , 0 (3)J J and J J        

 

and therefore the operator 
2 2
1 1 2 2, , ,z zJ J J J form a complete set with simultaneous eigen kets  

1 1 2 2,j m j m which is a product of 1 1j m and 2 2j m  for given values of j1 and j2 

1 1 2 2,j m j m = 1 1j m 2 2j m = 1 2 (4)m m              

Since m1 and m2 can respectively have  1 22 1 (2 1)j and j  orientations, the subspace with definite 

values of j1 and j2 will have  1 22 1 (2 1)j and j  dimensions. 
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b. Clebsch- Gordan coefficient  

For the total angular momentum vector J=J1+J2   

2 2 2 2 2
1 2

(5)

, 0; , , 0 (6)z

J J i J

Also it follows that

J J J J J J

  

        
     



 

The orthonormal eigen kets of J
2
 and Jz be jm . Since J

2
 commutes with Jz ,

2
1J  and 

2
2J ,they form 

another complete set and their simultaneous eigenkets will be 1 2j j j m . For given values of j1 and j2, 

1, 2, ,j j j m j m . The completeness of the known kets 1 2m m  allows us to express the unknown kets 

,j m  as a linear combination of 1 2m m  

1 1 2

1 2

1 2

,

(7)j mm m

m m

jm C m m   

The coefficients of this linear combination are called Clebsch- Gordon coefficients or Wigner coefficient 

or vector coupling coefficient. Multiplying equation (7) with the 1 2m m . 

1 2
1 2 (8)j mm mm m jm C   

Substituting this value of the co efficient in equation (7) we have  

1 2

1 2 1 2

,

(9)
m m

jm m m m m jm   

As the co efficient 1 2m m jm relates two orthogonal bases, they form a unitary matrix formed by these 

elements, m1,m2 labeled as the rows and j, m labeled as the columns. The parameters j1 and j2 are not 

appearing explicitly in the co efficients as we are working for definite values of j1 and j2. In the strict 

sense, the coefficients would be 1 1, 2 2 1 2j m j m j j jm .  

The inverse of equation (9) is given by  

1 2 1 2

,

| (10)
j m

m m jm m m jm     
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where the summation over m is from –j to j and j is from |j1-j2|. The unitary character of Clebsch- Gordon 

co efficients is expressed by the equation  

 

 

 

1 2

' ' ' ' ' '
1 2 1 2 1 2 1 2 1 1 2 2

,

1 2 1 2 ' '

,

*
1 2 1 2

11

' ' ' ' 11

11

j m

jj mm

m m

m m jm jm m m m m m m m m m m a

and

jm m m m m j m jm j m b

where jm m m m m jm c

 

 

  

  

 




 

c. Selection Rules: 

Operating equation (9) from left by Jz , we have  

 

 

1 2

1, 2

1 2 1 2 1 2

,

1 2 1 2 1 2

,

|

|

z z z

m m

m m

J jm J J m m m m jm

or

m jm m m m m m m jm

  

  



 

 

Replacing jm  using equation (9) and rearranging we get  

   
1, 2

1 2 1 2 1 2

,

| 0 12
m m

m m m m m m m jm      

which is valid only if the coefficient of each term vanishes separately. This leads to one of the rules of 

vector atom model, that is 

m=m1+m2---------------------------------------------------------------(13) 

We shall next find out how the various m and j values arise from the values of m1 and m2. For given 

values of j1 and j2; m1 can have values from j1 to –j1 and m2 from j2 to –j2 in integral steps. Since 

m=m1+m2, the possible values of m are j1+j2, j1+j2-1, j1+j2-2,-----------(j1+j2). The largest value (j1+j2) can 

occur only once when m1=j1 and m2=j2. The value of j corresponding to this m value is also (j1+j2). The 

next largest value of m is (j1+j2-1) which can occur in two ways m1=j1, m2=j2-1 or m1=j1-1 or m2=j2. This 

gives rise to the two known |m1m2> kets |j1,j2-1> and |j1-1,j2> leading to two linearly independent |j,m> 

combinations. We can have m=j1+j2-1 when j=(j1+j2) or (j1+j2-1) as can be seen from the following when 

j=j1+j2, m can have the values j1+j2-1, j1+j2-2,------------- -[j1+j2-1]. Thus m=j1+j2-1 can result from 

j=(j1+j2) or (j1+j2-1). This process is continued and the results are summarized as shown in table  
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Values of j and m for different values of m1 and m2
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' '

1 2

' ' ' '
1 2 1 2 1 2

m m

J jm J J m m m m jm     

Using equation 

 

 

   

   

' '

1 2

' '

1 2

1
2

' ', 1

1
2

1
2' ' ' '

1 1 1 1 1 2

,

' '
1 2

1
2' ' ' '

2 2 2 2 1 2

,

' '
1 2

' ' | ( 1) ( 1)

( 1) ( 1) , 1

1 1 1,

1 1 , 1

jj m m

m m

m m

j m J jm j j m m

j j m m j m

j j m m m m

m m jm

j j m m m m

m m jm

     

   

     
 

     
 













 

Multiplying both sides by 1 2m m we get      1,11 21
2

1

11  mjmmmmjj  

    

     )15(1,11

,111

21
2

1

2222

21
2

1

1111





jmmmmmjj

jmmmmmjj
 

Repeating the procedure with J+ in the place of J-  
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1
2

1 1 2

1
2

1 1 1 1 1 2

1
2

2 2 2 2 1 2

1 1 , 1

1 1 1,

1 1 , 1 (16)

j j m m m m jm

j j m m m m jm

j j m m m m jm

      

      

       

 

Equations (15) and (16) are the recursion relations required for the computation of the Clebsch- Gordon 

coefficients.  

e. Computation of Clebsch-Gordon Coefficients:  

The Clebsch-Gordon Coefficient matrix jmmm 21 has (2j1+1) (2j2+1) rows and columns. However it 

breaks up into smaller matrices depending on the value of m. It can be seen from table that there will be a 

1 X 1 sub-matrix for which m=j1+j2 and j=j1+j2. Then there will be a 2 X 2 sub-matrix for which m=j1+j2-1 

and j=j1+j2 or j=j1+j2-1. The rank of these matrices increases by unity until a maximum is reached and 

remains in that level for one or more sub matrices, thereafter it decreases by unity until the last 1 X 1 sub 

matrix is reached. For convenience the first 1 X 1 sub matrix is selected as +1 that is  

1 2 1 2 1 2, , 1j j j j j j      --------------------------------(17) 

To compute the next 2 X 2 sub matrix set m1=j1, m2=j2-1, j=j1+j2 and m=j1+j2 in equation (15). On 

simplification we get,  

      212121
2

1

1212121
2

1

21 ,1,1, jjjjjjjjjjjjjjj   

Using the results in equation (17) 

)18(11,
2

1

21

2
21,2121 












jj

j
jjjjjj  

Proceeding on similar lines with m1=j1-1, m2=j2; j=j1+j2 and m=j1+j2 in equation (15) we 

have 

1
2

1
1 2 1 2, 1 2

1 2

1, 1 (19)
j

j j j j j j
j j
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Equation (18) and (19) give two of the elements for which j=j1+j2 and m=j1+j2-1. The 

other two elements 1 2 1 2, 1 2 1 2 1 2 1 2, 1 1, 1 1, 1, 1j j j j j j and j j j j j j           

are evaluated using the Unitary nature of the transformation matrix, equation (11). While 

evaluating these elements it is the practice to take the element having the form 

1, 1 |j j j jj  which involves the highest value of m1 as real and positive. 

Using equation (11b), we get  

01,1,1,11

1,11,11

2121212121,21

2121212,121,21





jjjjjjjjjjjj

jjjjjjjjjjjj
 

Since
*

1 2 1 2jm m m m m jm , the above equation reduces to  

1 1
2 2

2 1
1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2

, 1 1, 1 1, 1, 1 0
j j

j j j j j j j j j j j j
j j j j

   
              

    
 

Use of the convention that the first element is real and positive gives  

1,11, 212121  jjjjjj =

1
2

1

1 2

j

j j

 
 

 
-----------------------------------(20) 

and  

 1,1,1 212121 jjjjjj
2

1

21

2










 jj

j
----------------------------------(21) 

The next sub matrix is 3 X 3 may be obtained in the same way. Using equation (15), (18) and (19) we can 

get three elements for where j=j1+j2 and m=j1+j2-2. Another three elements corresponding to j=j1+j2-1 and 

m=j1+j2-1 are obtained using equation (20) (21) and (15).  Equation (11b) is used to obtain the normalized 

set of coefficients that are orthogonal to the other six. As in the 2 X 2 case, the element 

2,22 21212,1  jjjjjj is selected as positive. The results of 2 X 2 and 3 X 3 sub matrix are 
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shown in the following tables. The recursion relation equation (16) can also be used for computing 

Clebsch-Gordon coefficient, if we start from the other end corresponding to j=j1+j2 and m= -(j1+j2)  

Table (2a) Clebsch – Gordon co efficient for 1 2 1 2 1 2m m j j 1 j 1, jand     

m1 m2 

jm  

1 2 1 21, 1j j j j     1 2 1 2, 1j j j j    

j1 j2-1 

          

2
1

21

2










 jj

j
              

1
2

1

1 2

j

j j

 
 

 
 

j1-1 J2 

           

1
2

1

1 2

j

j j

 
 

 
             

2
1

21

2













jj

j
 

 

Table (2b) Clebsch Gordon coefficients for 1 2 1 2 1 2 1 2m m j j 2 , 1, 1 j 2, jj j and       

m2 

jm  

1 2, 1 2 2j j j j    1 2 1 21, 2j j j j     1 2 1 22, 2j j j j     

j1 
j2-2 

 

2
1

21

22 )12(













Ajj

jj
 

 

1
2

1 2

1 2

(2 1)j j

j j B

 
 

  

 

1
2

1 1(2 1)j j

AB

 
 
 

 

j2-1 
j2-1 

 

2
1

21

214









 Ajj

jj
    2

1

21

21

Bjj

jj




   

1
2

1 22 1 2 1j j

AB

  
  
 

 

j1-2 
j2 

 

1
2

1 1

1 2

(2 1)j j

j j A

 
 

  

 
 

1
2

2 1

1 2

(2 1)j j

j j B

 
  

  

 

2
1

22 )12(







 

AB

jj
 

 

11.3 Problems: 

Obtain the Clebsch- Gordon Coefficient for a system having j1=1and j2=1/2 . 

Solution: The system has two angular momenta with j1=1and j2=1/2. The allowed values of j are 3/2 and 

1/2. For j=3/2, m=3/2, ½, -1/2, -3/2 and for j=1/2, m=1/2 and -1/2. The number of jm eigenstates is 
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thus six and the 6 X 6 matrix reduces to two 1 X 1 and two 2 X 2 matrices. The details of which are given 

in the table 3. The elements 

1 3 3 1 3 1 1 3 1 1 1 1 1 1 1
1, , 1, , , 0, , 1, , 0, ,

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
and    

Are easily obtained by the help of equation (17) to equation (21) and are listed in the table evaluation of 

the remaining elements are done as follows: 

(i) For
1 3 1

0, , :
2 2 2

   

Setting 1 2

3 1 1
, , 0

2 2 2
j m m and m     in equation (15) we get  

           
1 21 3 1 1 3 1 1 3 1

2 0, , 2 1, , 0, ,
2 2 2 2 2 2 2 2 2

      

Substituting the two coefficients on the right side from table (3), we have  

1 3 1
0, , 2 3

2 2 2
    

(ii) For
1 3 1

1, , :
2 2 2

   

       Setting 1 2

3 1 1
, , 1

2 2 2
j m m and m     in equation (15) and proceeding as in the previous 

case, we have  

1 21 3 1 1 3 1
2 1, , 2 0, ,

2 2 2 2 2 2

1 3 1 11, ,
32 2 2

or

  

  

 

 

(iii) For
1 1 1

0, , :
2 2 2

   

     Setting 1 2

1 1 1
, , 0

2 2 2
j m m and m      in equation (15) we get 

3

1
 

(iv) For
1 1 1

1, , :
2 2 2
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        Again setting 
2

1
1,

2

1
,

2

1
21  mandmmj  in equation (15) we get 

3
2  

The last two coefficients could be evaluated by following the procedure used for the derivation of 

equation (20) and (21).  Obviously, the last element  

1 3 3
1, , 1

2 2 2
     

Table (3) Clebsch- Gordon coefficient for j1=1 and j2=1/2 

m1 m2 

mj,  

2
3,

2
3  

2
1,

2
3  

2
1,

2
1  

2
1,

2
3   

2
1,

2
1   

2
3,

2
3   

1 ½ 1      

1 -½  31  3/2     

0 ½  3/2  - 31     

0 -½    3/2  3/1   

-1 ½    3/1  - 3/2   

-1 -½      1 

 

11.4 Let us sum up 

We have studies the addition of angular momentum Clebsch- Gordon coefficient selection rules recursion 

relations and computation of Clebsch Gordon coefficient and also one example. 

11.5 Key words  

Angular momentum, addition, Clebsch- Gordon coefficients etc. 

11.6 Question for Self study  

1) Explain the addition of angular momentum. 

2) What are Clebsch-Gordon co efficients? Explain their significance 

3) Explain the recurrence relation of Clebsch-Gordon co efficients. 

4) Explain how the Clebsch-Gordon coefficients can be computed. 

5) How many angular momentum states arise  for a system with two angular momentum j1=1 and j2-

1/2? Specify the states,  

    11.7 References  

 Modern Quantum Mechanics by J.J. Sakurai,   

 Introduction to Quantum Mechanics by Griffiths. 

 Quantum Mechanics by Thankappan 
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Unit-12: Symmetry in quantum mechanics –Symmetries, conservation laws and degeneracy. 

 Discrete symmetries, parity and time reversal symmetry  

 

Structure: 

12.0 Objectives  

12.1: Introduction  

12.2: Contents of the unit: 

a.  Symmetry transformations. 

b. Translation in space: conservation of linear momentum. 

c.  Translation in time: conservation of Energy 

d. Rotation in space: conservation of Angular momentum. 

e.  Space inversion: parity conservation. 

f.  Time reversal.  

12.3 Problems:  

12.4 Let us sum up  

12.5 Key words  

12.6 Question for self study 

12.7 Further reference 
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12.0 Objectives  

After studying this unit you are going to understand  

 Symmetry transformations. 

 Conservation law of linear momentum. 

 Conservation of energy. 

 Conservation of angular momentum. 

 Parity conservation. 

 Time reversal. 

 

12.1: Introduction  

Symmetry plays an important role in understanding numerous phenomena in physics. By 

considering the symmetries of a physical system one can obtain certain constants of motion. 

These constants of motion reveal lot of information regarding the system under consideration. So 

let us find out the connection between some of the important symmetry operations and the 

associated conservation laws.  

 

12.2: Contents of the unit: 

a. Symmetry transformations. 

b.  Translation in space: conservation of linear momentum. 

       c. Translation in time: conservation of Energy 

d. Rotation in space: conservation of Angular momentum. 

e. Space inversion: parity conservation. 

f. Time reversal.  

 

(a) Symmetry transformations: 

 A unitary transformation is said to be infinitesimal if the associated unitary operator is very 

close to a unit operator. We can then write 

(1)U I i G     

where I is the unit operator,  is a real arbitrary small parameter and G is a Hermitian operator  

† † †( )( ) ( ) (2)U U I i G I i G I i G G           
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Since  is small, the term in 
2
 is neglected.  

For U to be unitary: 

† †0G G or G G   -----------------------------------------------------(3) 

The operator G is called the generator of the infinitesimal unitary transformation.  

If the infinitesimal unitary transformation is performed, the transformed wave function is given   

( ) (4)I i G           

In the case of a dynamical variable the transformed operator  

† ( ) ( )

( )

[ , ] (5)

A UAU I i G A I i G

A i GA AG

A i G A

      

   

   

 

A dynamical variable A is said to be invariant under a unitary transformation  

† (6)If A UAU A     

It follows from equation (5) that this condition is satisfied if  

[G, A]=0 --------------------------------------(7) 

That is, dynamically variables that commute with the generator G of the infinitesimal unitary 

transformation are said to be invariant under the transformation concerned. 

A particular case of interest is when A=H, the Hamiltonian of the system. The condition then 

reduce to  

[G, H]=0-------------------------------------(8) 

Since G commutes with the Hamiltonian, it is a constant of motion. Consequently, observables 

proportional to G will also be constant of motion. A transformation that leaves the Hamiltonian 

invariant is called a symmetry transformation. Thus, the existence of symmetry transformation 

conserves probabilities and preserves the Hermitian nature of the operator also.   

The symmetries associated with geometrical operations like displacement, rotation and inversion 

in space and time called geometrical symmetries are the important space-time symmetries one 

considers normally. Out of these, the displacement in space and time rotations in space come 

under continuous symmetry and those associated with space inversion and time reversal come 

under discrete symmetry. 
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(b) Translation in space- conservation of linear momentum:  

Consider a particle in one dimension. We shall find out the effect of transformation on its wave 

function in the Schrödinger picture. Let S and 'S be two reference frames with 'S shifted from S 

by   and x and 'x  be the co ordinates of a point P with respect to S and 'S  respectively as 

shown in figure  

 

 and '  be the form of a typical wave function S and 'S . We shall assume that the physical 

properties of an isolated system will not change by a translation of the system by an arbitrary 

amount  . Hence for the physical point P.  

 

 

 

( ) ( ) (9)

( )

( ) (10)

x x and x x

Therefore x x

or x x

  

  

  

     

  

   

 

where   is infinitesimal expanding equation (10) we get  

 
( )

( ) ( ) 1 ( ) (11)

(12)

x

x
x

x
x x i G x

x

Pi
whereG i

x x


    


     



 
     

 



 

 

As (x) and '( )x are the wave functions of the same physical state referred to S and ',S they 

can be taken as expressing the same physical state in terms of the two different bases in the 

Hilbert space . The wave function (x) is transformed to '( )x  by the action of the operator is 

Gx on (x). Therefore, Gx is often referred to as the generator of infinitesimal translation in the 

x-direction. In the view of equation (12), the momentum operator between the generator of the 

             Two reference frames S and 'S  shifted by     
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infinitesimal translation in space denoting the position eigen state for a particle at the coordinate 

x measured from O and 'O respectively by 'x and x   

( ) | ( ) ' | (13)

' | 1 ( )

1 |

1 (14)

' 1 (15)

1 (16)

x

x

x

x

x

x x and x x

i p
where x x

i p
x

i p
x

i p
x x

Taking conjugates

i p
x x

   


 









       

 
  
 

 
  
 

 
                

 

 
               

 

 
                   

 











  

which is the relation connecting the basis states x and 'x defined with respect to S and the 

translate from 'S  respectively.  

Translation through some finite distance  could be regarded as a succession of N infinitesimal 

translation. Equation (16) then gives  

0

lim 1

( 1)

!

exp (17)

' exp (18)

N

x

N

NN

x

N

N

x

x

i p
x x

i p
x

N

i p
x

i p
and x x















    
 

  
  

 

 
    

 

 
    

 











 

The corresponding relation between the wave function of a physical state  is given by  

 

( ) ' exp

exp ( )

x

x

i p
x x x

i p
x
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Generalization to three dimensions is straight forward: 

.
( ) exp ( ) (19)

i P
r r


 

 
    

 




 

where P


 is the momentum of the particle. For an n- particle system, the form of the equation 

will be the same as equation (19) but P


 stands for 1 2 3 4 ............... np p p p p    
    

. From a 

generalization of equation (16), the unitary infinitesimal translation operator is given by  

.
T

i p
U I


 

 


 

It follows immediately  

 

†'

. .

, (20)

T TH U HU

i P i P
I H I

i
H P H

 





   
     
   

   

  

 



 

Hence, invariance of the Hamiltonian under translation in space requires that the linear 

momentum operator P must commute with H. This implies that the linear momentum operator P 

must commute with H and this in turn implies that the linear momentum of the system is 

conserved.  

 

(c)Translation in time - conservation of Energy:  

For an infinitesimal time translation , in the similar way, 

( , ) ( , ) ( , )

( , ) ( , )

1 ( , ) (21)

x t x t x t
t

i
x t i x t

t

H
i x t


    

  

 


    



 
   

 

  
    

  






 

Consequently, (-H/  ) may be defined as the generator of time translations on quantum 

mechanical wave functions.  

The unitary operator corresponding to infinitesimal displacement   in time of the system is 

given by  
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(22)
i H

U I


  


 

where H is the Hamiltonian, which is independent of time. The invariance of the Hamiltonian 

under translation in time requires that  

† (23)H UHU H or UH HU                   

It is obvious from the form of U that it commutes with H as it is independent of time. The time 

independence of H means that the total energy of the system is conserved. Thus the total energy 

of the system is conserved if the system is invariant under translation in time. If H depends on 

time, it will not be invariant under translation in time. 

(d) Rotation in space: Conservation of angular momentum:-                            

  Let OXYZ (s-frame) and ' ' '( ' )OX Y Z S frame be two coordinate systems. The system 

' ' 'OX Y Z  is rotated anticlockwise through an angle  about the z- axis. A point P whose 

coordinates with respect to the two systems are connected by the relations 

 

' cos sinx x y   ; ' sin cos ; ' (24)y x y z z      ; when  is infinitesimal 

cos1 and sin. Then  

' ; ' ; 'x x y y x y z z              ------------(25) 

The wave function at a physical point P has a definite value independent of the system of 

coordinate. Therefore, the form of the wave function in S and 'S are related by  

)26()()(  rr     
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Substituting for ', ', 'x y z from equation (25) we have  

 , , ( , , ) (27)x y x y z x y z                 

For convenience, replacing  x  by  x-y  and  y  by  y+x  on both sides  

( , , ) ( , , )

( , , ) ( )

( , , ) ( , , )

x y z x y y x z

x y z y x
x y

i
x y z x i y i x y z

y x

   

 
 


 

   

 
   

 

    
        

    
 



 

Since the operator associated with LZ is: 

 


















x
y

y
xi  

We have '( ) 1 ( ) (29)Z

i
r L r


 

 
     
 

 

Thus Lz/   is the generator of infinitesimal rotation about the z-axis for rotation about any 

arbitrary axis  

ˆ'( ) 1 . ( ) (30)
i

r n L r


 
 

              
 




 

here n is the unit vector along the arbitrary axis  

Rotation through a finite angle  can be considered as a succession of N infinitesimal rotation 

each one through an angle /N proceeding as in the case of translation in space. We get the rule 

for the transformation of the wave function between the basis states r of position referred to S 

and 'r  referred to the rotation frame '.S  

ˆ.
( ) exp ( ) (31)

n L
r i r  

 
    

 




 

Equation (31) can be written in terms of r  and 'r  as below:  
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.
' exp .

.
exp (32)

n L
r r i

or

n L
r i r

  



 
  

 

  
               

 





 

For an n particle system the angular momentum, operator L is the sum of angular momentum 

operator of the individual particles. The unitary operator corresponding to an infinitesimal 

rotation  about an arbitrary axis n is given by : 

ˆ( , ) . (33)R

i
U n I n J


   




 

where J is total angular momentum for H to be invariant under the transformation, 'H   must 

equal H  

 

†

.
ˆ. .

. , (34)

R RH U H U

i i
I n j H I n J

i
H n J H

 



 

   
     
   

  



 



 

This is, the condition for invariance of H requires that [J,H]=0. Thus conservation of total 

angular momentum is a consequence of the rotational invariance of the system. 

(e) Space Inversion: Parity Conservation:- 

We have so far discussed the continuous symmetry operations. We now consider discrete 

symmetry transformations, the reflection through the origin. This operation is called space 

inversion or parity operation. Associated with such an operation, there is a unitary operator 

called the parity operator, which is usually denoted by the letter P. For a single particle wave 

function (r) parity operator P is defined by 

ˆ ( ) ( ) (35)P r r     

For a system of several particle  

1, 2, 3, 1, 2,
ˆ ( .............. ) ( .............. ) (36)n nP r r r r r r r      

It follows from equation (35) that  
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2ˆ ˆ( ) ( ) ( ) (37)P r P r r       

It is evident from equation (37) that (r) is an eigen function of 2P̂  with eigen value 1 and 

therefore the eign values of P̂  are -1 or +1. That is., the eigen functions either change sign (odd 

parity) or do not change sign (even parity) under inversion. Denoting the eigen functions 

corresponding to even and odd eigen states by +(r) and -(r) we have  

ˆ ( ) ( ) ( ) (38 )

ˆ ( ) ( ) ( ) (38 )

P r r r a

and

P r r r b

  

  

  

  

   

    

 

The eigen states +(r) and -(r) are orthogonal, therefore  

)39(0)()(  rr   

It can easily be proved that the parity operator P̂  is Hermitian and unitary. That is.,  

† † †ˆ ˆ ˆ ˆ ˆ ˆ 1P P and PP P P   --------------------------(40) 

 The effect of the parity operator P̂ on observables r, p and L can easily be obtained with the help 

of equation  

† †

ˆ ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ (41)

Pr r r r rp r

Pr rp or PrP rPP r

      

      
 

Similar considerations give  

† †ˆ ˆ ˆ ˆPpP p and PLP L    ----------------------------(42) 

If the parity operator P̂  leaves the Hamiltonian H invariant i.e., †ˆ ˆ ,PHP H  then we say that the 

system has space inversion symmetry and the parity operator commutes with the Hamiltonian. In 

other words, the parity is conserved. If the weak nuclear interaction is neglected the parity 

operator commutes with the Hamiltonian of atomic and nuclear systems. It is now well 
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established that in strong interactions parity is conserved. However it is not conserved that in 

beta decay, decay of 
+
 or 

-
 meson etc. They are called by the weak interactions.  

(f)Time Reversal: 

Another important discrete transformation is one in which the time is reversed 't t . Denoting 

the wave function after time reversal by '( , )r t   , we have  

'( , ) ( , ); (43)r t T r t t t       

where T is the operator that effects the transformation. Let A be a time independent operator 

associated with an observable and 'A be its transform.  

Consider the equation  

1 1

1

1

(44)

( )

( )

(45)

A

Then TA TAT TAT

TAT

or

A where A TAT

 

   



 

 







   



      

 

We shall now investigate the effect of the T operator on observables to the inconformity with the 

time reversal invariance in Classical Mechanics. We require that the position operator r be left 

unchanged and the momentum operator shall change sign under time reversal. 

 Mathematically,  

1 1 1; ' ; ' ...............................(46)r TrT r p TPT p L TLT L             

We now evaluate the fundamental commutation relation  

'', xx p 
 

 

 

' 1 1

1 1

'

', ,

(46)

, , (47)

x x

x x

x x

x p TxT Tp T

By virtue of equation

TxT x and Tp T p

x p x p i

 

 

   
   

  

                 
 



 

The value of '', xx p 
 

commutator can be also be written as  
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 ' 1 1', , ( ) (48)x xx p T x p T T i T     
 

  

From equation (47) and (48) we have  

)49()( 1   iTiT  

which is possible only if T operating on any number changes it into its complex conjugate. 

Hence, T is not a linear operator. An operator A is said to be anti-linear if  

  )50()()( 22112211    AcAcxcxcA   

Let us now investigate the effect of time reversal          in the time dependent 

Schrödinger equation.  

)51(),(),( 



trHtr

t
i    

of a particle moving in a time independent particle V(r). Since     the 

Hamiltonian operator for a particle under time reversal is invariant. Hence,  

[T, H]=0------------------------------------------------------- (52) 

Operating equation (51) from left by T and noting [T, H] =0 

)53(),(),( 











trHTtr

t
iT   

In view of the T(i  )=-i  T, eqn (53)  reduces to  

'
'( , ') ( , ') ( , ')

'

'( , ') (54)

i r t H r t or i r t
t t

H r t


 



 
 

 

 

 
 

Thus the Schrödinger equation satisfied by the time reversed function ( , ')r t  has also the same 

form as the original one. 

As the non linear operator T performs the time reversal and complex conjugation it is possible to 

consider it as the product of a linear operation U and a complex conjugation operator K,  

T = UK ---------------------------------------------------------------------------------(55) 

To ensure the norm of '  and  equal, the linear operator U has to be unitary  

( ' )t t t 

' ' ,r r and p p 
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1

†|

(56)

UK UK

K U U K

K K

   

 

     









   

  

The above simplification is possible only if 
† 1UU  ,  


, since the norm is real. 

Since U is unitary and K is anti-unitary the time reversal operator T is anti-unitary under time 

reversal for the position operator r to remain unchanged and the momentum operator to change 

sign, the operator U should be reduce to the unit operator. 

It may be noted that the time reversal invariance of the Schrödinger equation results only if the 

commentator [T,H]=0. At one time it was thought that all Hamiltonians satisfied the time 

reversal invariance condition. However,, now it is established that Hamiltonian corresponding to 

weak nuclear interaction is not time reversal invariant.  

 12.3 Problems:  

(1) Prove that the parity of spherical harmonics Yl,m(,) is (-1)
l
 . 

Solution:- When a vector r is reflected through the origin, we get the vector –r. In spherical 

polar coordinates, this operation corresponds to the following change in the angles  and  

leaving r unchanged; (-) and (+)  

 
 

,

,

,

( , ) (cos )exp( )

( , ) cos( )exp (

( cos )exp( ) ( )

(cos ) ( 1) exp( ) ( 1)

( 1) ( , )

m
l m l

m
l m l

m
l

m l m m
l

l
l m

We have Y c P im

c is constant

Y c P im

cP im emp im

cP im

Y

   

       

  

 

 





       

 

  

 

 

During simplification we have used the result ).()1()( xPxP m

n

mnm

n

 That is., the parity of 

spherical harmonics is given by (-1)
l
.  

(2) If )(r  and )(r are the eigen function of the parity operator belonging to even and odd 

eigen states, show that they are orthogonal.  
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Solution: From definition we have  

ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) | ( )

P r r and P r r

then r r r PP r

   

   

   

   

  


 

Here we have used the resultant 2P̂  =1 since P̂  is Hermitian  

ˆ ˆ( ) ( ) ( ) | ( ) ( ) ( )

( ) ( ) 0

( ) ( )

r r P r P r r r

r r

Hence r and r are orthogonal

     

 

 

     

 

 

  

   

12.4 Let us sum up  

We have learnt about the symmetries in quantum mechanics. Continuous symmetries will lead to 

certain conservation laws such as conservation of linear momentum, angular momentum energy 

etc. Whereas, discrete symmetries lead to conservation of parity and time reversal in quantum 

mechanics.   

12.5 Key words  

Symmetry, conservation laws, parity, time reversal.  

12.6 Question for self study 

(1) What is symmetry transformation? Prove that a symmetry transformation conserves probabilities.  

(2) Explain how the momentum operator becomes the generator of infinitesimal transformation 

space. 

(3) Conservation of angular momentum is a consequence of the rotational invariance of the system. 

substantiate  

(4) Explain the effect of parity operator on the observables r, p and L 

(5) Why time reversal operator is not linear? 

(6) Discuss the effect of time reversal in the time dependent Schrödinger equation. 

(7) Prove that the parity operator is Hermitian and Unitary  

(8) Show that the time reversal operator operating on any number changes it into its complex 

conjugates. 

12.7 Further reference:  

 Introduction to Quantum Mechanics by Griffiths By Sakurai  
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Unit-13: Identical particle- Indistiguishability exchange symmetry, exchange degeneracy, spin and 

statistics, permutation symmetry. 

Structure: 

13.0 Objectives 

13.1 Introduction 

13.2 Contents 

(a) Physical meaning of Identity 

(b)Symmetrical and anti symmetric wave function. 

(c)Exchange Degeneracy 

(d)Particle exchange Operator
 

(e) Distinguishability of identical particle
 

(f) The Pauli‘s exclusion Principle: 

(g)Connection with statistical Mechanics 

13.3  Let us sum up 

13.4 Key words 

13.5 Question for self study  

13.6 Further reference 

 

 

13.0 Objectives  

After studying this unit you will be able to understand: 

 Symmetrical and anti-symmetrical wave function. 

 Exchange degeneracy. 

 Particle exchange operator. 

 Distinguishability of identical particles. 

 The Pauli‘s exclusion principle  

 connection with statistical mechanics etc 
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13.1 Introduction  

By identical particles, we mean the particle like electrons which cannot be distinguished by means of any 

inherent property, since otherwise they would not be identical in all respects. In classical mechanics, 

identical particles do not lose their identity despite the identity of their physical properties due to the 

existence of sharply definable trajectories for individual particles since each particle can be followed 

during the course of an experiment. 

In Quantum Mechanics, a particle is described by a wave packet of finite size and shape and the exact 

specification of the position and momentum of the particle simultaneously is restricted by Heisenberg‘s 

uncertainty principle q p    . Therefore, there is no way of keeping track of individual particles 

separately, specially, if they interact with each other to an appreciable extent. Hence in Quantum 

Mechanics, the wave functions of the particles overlap considerably. As a result the Quantum Mechanical 

particles cannot be distinguished.  

There are two general categories of particles:  

(a) Classical Particles which are identical but distinguishable. 

(b) Quantum Particles which are identical and indistinguishable. 

It is to be noted that, when quantum particle density is sufficiently low so that their uncertainty is small in 

comparison to the volume available to them they also obey classical statistical otherwise we must use 

Quantum Mechanics. 

13.2 Contents: 

a) Physical meaning of identity. 

b) Symmetrical and anti symmetrical wave functions. 

c) Exchange degeneracy. 

d) Particle exchange operator. 

e) Distinguishability of identical particles.  

f) The Pauli‘s exclusion principle. 

g) Connection with statistical Mechanics 

 

(a) Physical meaning of identity:  

Identical particles are those particles in a system for which the system remains unaltered by interchanging 

the particles. As each particle is described quantum mechanically by a wave packet, these particles can be 

distinguished from one another only if their wave packets do not overlap. Similarly, if particles have spin 
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which are aligned in different positions in the process of any interaction they can be identified from one 

another as a result of such interaction.  

Thus, the word identical in quantum mechanics is to describe the particles that can be substituted for each 

other under the most general possible circumstances with no change in physical situation of the system. 

According to spin considerations, the particles can be distinguished from one another if they have 

different spin components. The component of spin along some particular axis remains unchanged during 

elastic collision. 

 

(b) Symmetrical and anti symmetric wave function. 

The Schrödinger equation for n identical particles is written as  

 

where each of the numbers represents all the co ordinates (positional and spin) of one of the particles. The 

Hamiltonian H is symmetrical in its arguments due to the identity of particles. The identity of particles 

means that they can be substituted for each other without changing H or indeed any other observable.  

 

There are two kinds of solutions of wave functions of equation (1) that have symmetric properties of 

particular interest.  

(i) Symmetric wave function s: A wave function is symmetric if the interchange of any pair of 

particles among its arguments leave the wave function unchanged. 

(ii) Anti symmetric wave function A: A wave function is anti-symmetric if the inter change of 

any pair of particles among its arguments changes the sign of the wave function. It may now be pointed 

out that the symmetry character of a wave function does not change with time. If  s is symmetric at a 

particular time t then Hs is also symmetric and according to equation (1), s t  is symmetric at time 

t, since s and s t   are symmetric at time t, s at infinitesimally later time t+dt given by s+

s dt
t




 is also symmetric. Such a step by step integration of the wave function can in principle be 

continued for arbitrary large time intervals and s is seen to remain symmetric always.  

Similarly if A is anti symmetric wave function at any time t, then HA and hence A t  are anti 

symmetric and the integration of the wave function A shows that A  is always anti symmetric. 

If P̂ is an exchange operator then we must have  

       1,2......... 1,2........ , 1,2........ , 1H n n t i n t
t
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ˆ 1,2 2,1

ˆ 1,2 2,1

s s

A A

P

P

 

 



 
 

This symmetry of the wave function has relationship with the spin of the particle. This relationship is 

listed in the following postulates. 

1. The identical particles having an integral spin quantum number are described by symmetric wave 

function i.e.,  

    ˆ 1,2,3,........ ...... .... 1,2,3,....... ... .......s sP r s n s r n    

This class of particles i.e., the particles described by symmetric wave function are known as Bose 

particles or Bosons and obey Bose-Einstein statistics. The example of Bosons are photons (spin1), neutral 

helium atoms in normal state (S = 0) etc. 

 

2. The identical particles having half integral spin quantum number are described by anti symmetric wave 

function i.e.,  

   ˆ 1,2,........ ...... .... 1,2,....... ... .......A AP r s n s r n    

These clans of particles i.e., the particles described by anti symmetric wave function obey Fermi-Dirac 

statistics and the particles are known as Fermi-particles or Fermions. The examples of Fermions are 

electrons, protons, neutrons etc.  

 

(c) Exchange Degeneracy:-  

We now show that s and A can be constructed from general unsymmetrized solution  of equation (1). 

 If the arguments of the wave function  are permuted in any way, then the resulting wave function is also 

a solution of equation (1). This is because same permutation applied throughout equation (1) does not 

impair its validity as it corresponds simply to a relabeling of the particles. Since H is symmetric, 

permuted H will be same as original H and the resulting equation is same as equation (1) for the permuted 

. In this way n! Solutions can be obtained from any one solution, each of which corresponds to one of 

the n! Permutations of the n arguments of .  

An anti-symmetric unnormalized wave function can be constructed by adding together all the permuted 

wave functions that arise from the original solution by means of an even number of interchanges of pairs 

of particles and subtracting the sum of all the permuted wave function that arise by means of an odd 

number of interchanges of pairs of particles in the original solution.  
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In the case where the Hamiltonian does not depend upon time stationary state solutions  

     /
1,2,........... 1,2,....... 2n

iE t
A n n e  

 


 

can be formed and the time independent Schrodinger Equation can be Written as  

       1,2,........... 1, 2,....... 1, 2............ 3H n n E n      
 

There are n! Solutions of this equation (eigen function) derived from (1,2,……n) by means of 

permutations of its arguments belonging to the same eigen value E. Any linear combination of these eigen 

functions is also an eigen function (i.e., solution of equation (3)) belonging to eigen value E. Hence the 

system degenerate and this type of degeneracy is called ‗exchange degeneracy‘. 

Let us now consider a two particle wave function (1S1, 2S2). For a two particle wave function the 

Schrödinger‘s time independent equation is written as  

H(1,2) (1,2) = E(1,2)---------------------------------(4) 

The 2! = 2 solutions of this equation are (1, 2) and (2, 1) the solutions correspond to a single energy 

state E. 

The symmetric wave function can be written as  

     1,2 2,1 5s                
 

and the anti-symmetric wave function is written as  

     1,2 2,1 6A                
 

Similarly, for a system of 3 particles the Schrodinger equation is  

     1,2,3 1,2,3 1,2,3 (7)H E          
 

This equation has 3!=6 solutions corresponding to the same eigen value E. The six possible functions 

obtained by exchanging the indices of the particles are 

           1,2,3 , 2,3,1 , 3,2,1, , 1,3,2 , 2,1,3 , 3,1,2     
 

Out of these six functions, those arising by an even number of interchanges  

 

of the pairs of particles in original wave function
 
 

 
     1,2,3 , 2,3,1 , 3,1,2  

 

and the functions arising by an odd number of interchanges of pairs of particles in original function (1, 

2, 3) are  

     1,3,2 , 2,3,1 , 3,1,2  
 

So the symmetric wave function can be written as  

 1,2,3
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i
t






i




         

   

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3

3,2,1 8

s     



    

   

and the anti-symmetric wave  function is  

              1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1 9A            
 

Here A and s are unnormalized wave function. 

 The average value of any dynamical quantity P in state  is given by 

*

*

p d
P

d

  

  




 

where P is the operator corresponding to the dynamical quantity p. For example, the operator P associated 

with energy E, is 
  

and the operator P associated with  

momentum p is  

 

If  is the normalized function, then  

 

*

*

1

10

d

p p d

  

  



  




 

The symmetric and anti symmetric normalized eigen functions lead to the following results  

*

*

s s s

A A A

P p d

and P P d

  

  








 

For symmetric solution, an exchange of coordinates of particles leaves both s and 

unaltered. So,  remains unchanged. In the case of anti-symmetric solution, an exchange of co 

ordinates changes the signs of both A and      .    So          again remains unchanged. Therefore we 

conclude that any interchange of two particles leave the average or the observed property of the system 

unaffected.  

(d) Particle exchange Operator:-  

The particle exchange operator P12 is defined by equation 

     12 1 1 2 2 2 2 1 1; ; 11P r s r s r s r s           
 

The effect of this operator is to interchange the subscripts of the spin and position variables of the wave 

function for particles 1 and 2. If the two particles are truly identical, then the Hamiltonian must be 

*
s

sP

*
A AP
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symmetric with respect to the position and spin of the identical particles. In other way, energy of the 

system will remain same if we merely relabel the particles. 

 

Eigen values and eigen functions of particles exchange operators   

The eigen value equation for particle exchange operator is  

     12 1,2 1,2 12P      
 

Where  is eigen value of operators P12 in state (1,2) 

Operating again  

         

     

2
12 12 12 12 12

2 2
12

1,2 1,2 1,2 1,2 1,2

. 1,2 1,2 13

P P P P P

i e P

      

  

      

 
 

From definition of particle exchange operator 

12 (1,2) (2,1)P  
 

Operating again  

   

     

 

2
12 12

2
12

2

1,2 2,1

. ., 1,2 1,2 14

(13) (14) 1 1 15

P P

i e P

Comparing and we note that or

 

 

 



 

   

 

i.e., the eigen values of particle exchange operator are 1, just they are for parity operator. The respective 

eigen functions of particle exchange operator corresponding to eigen values +1 and -1 are symmetric and 

anti symmetric.  

 

   

   

   

   

   

   

   

12 12

12 12

12 12

. ., 16

:

1,2 2,1

1,2 2,1

2,1 1,2

, 1,2 2,1

1,2 2,1

2,1 1,2

2,1 1,2

s s A A

s

s

s

A

A

A

i e P and P

This may be seen as follows

P P

Also

Then P P

   

  

  

  

  

  

 

  

   

 

    

  

 

   

 

      

 

Such an interchange operator applied twice brings the particles back to their original configuration and 

hence produces no change in the wave function 
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Commutation relation with Hamiltonian: 

 We have  

   

       

       

     

 

   

12

12

12

12 12

12 12

12,

1,2 2,1

1,2 1,2 2,1 2,1

1,2 2,1 1,2 1,2

. ., 1,2 1,2 1,2 0

1,2 ,

1,2 1,2 0

. 0

P

P H H

H H P

i e P H H P

As is non zero

P H H P

i e P H

 

 

 









 

   

 

   

 

Thus the particle exchange operator commutes with the Hamiltonian  

(e) Distinguishability of identical particle: 

The two particles can be distinguishable from each other of the sum of the probabilities of the individual 

wave function in two states is equal to the probability derived by the symmetrised wave function 

i.e.,  if  

        

         

22 2

2 2 *

1,2 2,1 1,2 2,1

1,2 2,1 2Re 1,2 2,1 17

   

   

  

    
 

 

where Re denotes the real part of 
 

It is possible only when overlap of wave function (1,2) and (2,1) is zero or    *2Re 1,2 2,1  
 

=0  

Thus, when coordinates (space and spin) of two particles are not the same between exchange degenerate 

functions, the interference term i.e.,    *2 1,2 2,1eR  
 

becomes zero and particle coordinates do not 

overlap.  

Like this, the identical particles can be distinguished by means of their position or their spin components. 

Such a situation implies in the case of two particles, that the wave function  (1,2) is different from zero 

only when the co ordinate 1 is in same region A, the co ordinate 2 is in region B and A and B have no 

common domain, the co ordinate probability density is given by (17) . If now (1, 2) vanishes whenever 

1 is not in A and 2 is not in B and A and B do not overlap, the bracket term i.e.,    *2Re 1,2 2,1  
 

is zero everywhere and reduces to  

   
2 2

1,2 2,1   

   *1,2 2,1 
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Thus, the probability density associated with either of the symmetrized wave function   (1,2)  (2,1) is 

the sum of the probability  densities associated with (1,2) and (2,1) separately. This precise result will 

be obtained if the particles are not identical. Thus the interference effects between exchanges of 

degenerate wave functions represented by the bracket term in (17) disappear when the co ordinates of the 

particle do not overlap. 

 

(f) The Pauli’s exclusion Principle:  

 A particle, during its motion in space reflects the properties of the statistics which it obeys. Consider two 

particle systems which contain electrons in indistinguishable positions. Electrons are ½ spin particles and 

obey Fermi- Dirac statistics. If they occupy the same position in space and have the same z- component of 

spin, it can be seen that the eigen functions of exchange operator for a case will be  

   

   

 

12 1 1 2, 2 2, 2 1 1

1 1 2, 2

1 2

1 2

, ; ; ,

, ; 18

0 19

A A

A

P r s r s r s r s

r s r s

r r
if

s s

 



 

 


 



 

The non existence of the wave function under these conditions implies that there is zero probability that 

the particle will occupy the same point and have identical spin orientations.  Equation (19) is the physical 

principle called ‗Pauli‘s exclusion principle‘ which states that- ―no two particles obeying Fermi statistics 

can exist in the same quantum state‖. This means that if there are two electrons in one atomic orbit 

(angular momentum L), they cannot have the same spin orientation. Then spin have to be oppositely 

directed. 

 

The Pauli’s Exclusion principle from Slater’s Determination   

In many particle problems, a useful zero order approximation can be obtained by neglecting the 

interactions between the particles that make up the system under consideration. The approximate 

(unperturbed) Hamiltonian is equated to the sum of Hamiltonian function for the separate particles. Thus, 

for a system of n particles-  

       ' ' '
0 0 0 01,2.......... 1 2 ( ) 20H n H H H n      

and the approximate energy eigen function is a product of one particle eigen function of 
'
0H  

     

   '
0

1,2,..... 1 2 ....................... ( ) (21)

(1) 1 1 .

a b k

a b k

a a a

n n

with E E E E

H E etc
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If the particles are electrons, an anti-symmetric wave function must be constructed from the  given by 

(21). This is most easily expressed as determinant of ‘s known as Slater‘s determinant 

 

(1) (2) ( )

(1) (2) ( )
1,2.... (22)

(1) (2) ( )

a a a

b b b
A

k k k

n

n
n

n

  

  


  

  

   

               

   

 

The un normalized A given in equation (22) is clearly an anti-symmetric solution of the approximate 

wave equation                                        (23) 
 

Equation (22) has the interesting property that it vanishes if two or more of the ‘s are same. For example 

if a(1)=b(1) or a(1)=a(2), then determinant will vanish. This is the special case of the general result 

that an anti-symmetric wave function cannot be constructed from a solution that is unaltered by the 

interchange of any pair of particles. Thus the approximate Hamiltonian H0 has no solutions for which 

there is more than one electron in any one of the states a, b…...k. This result is the well known ‗Pauli‘s 

exclusion principle‘ which states that no two particles described by anti-symmetric wave functions can 

exist in the same quantum state.  

 

(g)Connection with statistical Mechanics: 

The unsymmetrized zero solution in (21) can be used to construct a symmetric as well as an anti-

symmetric wave function. Such a symmetric function is the sum of all different permutations of the 

numbers 1,2…....n among the one particle eigen functions a , b …….n. This wave function is unique 

and can be specified simply by defining how many particles are there in each of the states a, b,....... The 

fundamental statistical difference between particles that are described by anti-symmetric and by 

symmetric wave function is that number of the former type that can occupy any state is limited to 0 or 1 

whereas any number (0,1,2....) of the latter type of  particles can occupy any state.  

Hence the solution of large number of non-interacting (or weakly interacting) particles for which the 

states can be enumerated in these two ways from the subject matter of quantum statistical mechanics.  

The particles that are described by anti-symmetric wave functions are said to obey Fermi- Dirac statistics 

and are called Fermions. The examples of fermions are- electrons, protons and neutrons. The other 

particles which are described by symmetric wave function obey Bose-Einstein statistics and are called 

Bosons. The examples of bosons are - mesons, photons (i.e., light quanta) etc. Further the aggregates of 

particles that are strongly bound so that they can be regarded as particles and can be described either by 

symmetric or anti symmetric wave functions. For example the nucleus of helium atom is made up of two 

photons and two neutrons and an uncertain number of -mesons, all these particles forming the helium 

 0 0AH E  
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nucleus are strongly bound together. If we consider a number of helium nuclei which has no interactions 

or weak interactions so that changes in internal motion of nuclei due to these interactions are negligible, 

then the motions of centers of gravity of nuclei can be described approximately by symmetric wave 

functions. The interchange of a pair of helium nuclei can be thought of as the net effect of interchange of 

two pairs of neutron (fermions) is anti symmetric, the resultant of first four interchanges leaves the 

approximate wave function unchanged and in - mesons the symmetry of wave function is such that the 

latter interchanges (i.e., interchanges of  mesons) have no effect. The extension of above reasoning gives 

the inference that the strongly bound particles which themselves  interact weakly with each other (ex: 

nuclei, atoms, molecules) obey Bose-Einstein statistics when each of them consists of even total number 

of electrons , protons and neutrons; while they obey Fermi-Dirac statistics when each consists of an odd 

total number of these particles. 

 

13.3 Let us sum up: 

We have understand the symmetrical and anti symmetrical functions exchange symmetry particle 

exchange operator distinguishability of identical particles the Pauli‘s exclusion principle and its 

connections with statistical mechanics.  

 

13.4 Key words  

Wave function, symmetrical and anti symmetrical wave function degeneracy, identical particles etc. 

 

13.5 Question for self study  

1. Define symmetric and anti symmetric wave function? 

2. What is exchange degeneracy? 

3. What is meant by symmetric and anti symmetric wave function? How can the behaviour of 

particles be distinguished in system having symmetric and anti symmetric wave function? 

4. Write a short note on the Pauli‘s exclusion principle? 

5. Define particle exchange operator and show that if eigen values are 1  

6. Show that the indistinguishability of similar particles implies that admissible wave functions must 

obey symmetry restrictions w.r.t interchange of particles. 

13.6 Further reference: 

 Advanced Quantum Mechanics by J.J.Sakurai. 
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 Unit-14: Stationary state perturbation theory, first and second orders, degenerate and non- 

 degenerate cases. 

 

 Structure: 

14.0 Objectives 

14.1 Introduction 

14.2 Contents: 

a : Basic concepts  

b: Non degenerate energy levels 

          c: Anharmonic oscillator: first order correction  

d: Degenerate energy levels. 

e: Effect of electric field on the n=2 state of hydrogen. 

14.3 Let us sum up 

14.4 Questions for self study 

14.5 Further references 
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14.0 Objectives 

After studying the unit you will be able to understand  

 Basic concepts of the perturbation theory. 

 Energy corrections to non-degenerate energy levels and examples. 

 Energy corrections to the degenerate energy levels and examples. 

 

14.2Introduction 

We have already considered in earlier discursion some of the systems for which the Schrödinger 

equation is exactly solvable. For example, Harmonic oscillator, finite potential well, infinite 

square well potential, Hydrogen atom etc. But the potential energy of most of the real systems is 

different from those which have been considered and an exact solution is not possible for them. 

Therefore different approximation methods are considered to obtain approximate solution of the 

systems. Perturbation method is one such method. 

 

14.2 Contents: 

a : Basic concepts  

b: Non degenerate energy levels 

c: The ground state of helium. 

d: Effect of electric field on the ground state of hydrogen. 

e: Degenerate energy levels. 

f: Effect of electric field on the n=2 state of hydrogen. 

g: Spin orbit interaction. 

h: Worked examples. 

 

(a) Basic concepts:                                                                                                                           

In the time independent perturbation approach a known solution of a system whose Hamiltonian 

is only slightly different from that of system under consideration is used as the starting point. 

The Hamiltonian operator H representing the total energy of the system can be written as  

H=H
0
+H

1
-----------------------------------(1)  
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Where H
0
 is called the unperturbed Hamiltonian whose non degenerate eigen values                     

(  2,1,0 nEn ) and eigen functions n
0
 are named to be known and the time independent 

operator H
1 

called the perturbation is small. These functions  2,1,0 nn form a 

complete orthonormal basis. 

These correspond to the eigen value equation  

0 0 0 0 1,2 (2)n n nH E n               

Our aim here is to solve the Schrödinger equation: 

)3( nnn EH   

The Hamiltonian H of the perturbed system is  

)4(10  HHH   

as the parameter  changes from 0 to 1, the Hamiltonian changes from H
0
 to H and the eigen 

function from n
0
 and n . We can therefore expand En and n in terms of the parameter  as  

0 (1) 2 (2)

0 (1) 2 (2)

(5)

(6)

n n n n

n n n n

E E E E 

    

    

    
 

where the terms independent of  are known as zero order terms (unperturbed ones), those in  

are first order, those in 
2
 second order and so on. Thus (1) (1)

n nE and are respectively the first 

order correction to the energy and wave function (2) (2)
n nE and the respective second order 

correction and so on. Substituting these in equation (3), we get  

    
         

1 20 1 0 2

1 2 1 20 2 0 2

( ) n n n

n n n n n n

H H

E E E

    

     

    

        

 

      
 

1 10 0 0 1 0 0 (1) 0 0

2 1 (1) 0 (2) (2) 0 0 (1) 0 (2) 0................(7)

n n n n n n n n

n n n n n n n n

or

H E H H E E

H H E E E

     

     

    

     

 

Since  is arbitrary, the co efficient of each power of  must vanish separately and therefore we 

have  
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0 0 0 0

1 0 0 (1) (1) 0 0 (1)

1 (1) 0 (2) (2) 0 (1) (1) (1) (2)

(8)

(9)

(10)

n n n

n n n n n n

n n n n n n n n

H E

H H E E

H H E E E

 

   

    

 

   

    

 

As we are interested only up to second order we neglect equations beyond equation (10), 

equation (8) is identical to equation (2) as expected since it reflects to perturbation of zero order. 

(b) Non degenerate energy levels:  

First we shall consider perturbations on energy levels that are non degenerate. For convenience 

we shall use the wave function itself to label the states.  

 

First order correction to the energy:- 

Multiplying equation (9) from the left by 0

n we get  

  )11(|| 10000000000 
nnnnnnnnnn EEHH   

Since H
0
 is Hermitian, the second term on the left reduces to 100

nnnE  and equation (11)  

gives  

(1) 0 0| (12)n n nE H    

In simplified form, equation (12) can be written as  

  )13(|1  nHnEn  

which is often referred to as matrix elements  

First order correction to wave function:  

The First order correction to the wave function is written as a linear combination of the 

unperturbed wave functions of the system. 

(1) 0

1

(14)n i i

t

a 




   

Substitution of equation (14) in equation (9) and multiplication from the left by 0
m  gives  
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 10 0 0 0 0 0 0 0 0 0

1 1

0 0 0 0

|

|

m n l l m l n m n l n m l

l l

m n m m m n

H a E E a E

or H a E a E

       

 

 

 

   

  

 
 

)15(
||

0000

00












mnmn

nm

m
EE

nHm

EE

H
a


 

All the a‘s except an in equation (14) can be calculated using equation (15). The coefficient an is 

found to be zero from the normalization condition .1nn  It follows that  

(1) 0

0 0

|
(16)n m

m n m

m H n

E E
 


 


  

Consequently the energy and wave function corrected to first order are  

0

0 0

0 0

| (17)

' |
(18)

n n

n n m

m n m

E E n H n

and

m H n

E E
  

                                      


                                 




 

where the prime on the sum means that state m = n should be excluded.  

Second order correction to the energy: 

The same procedure is used to obtain the second order correction to the energy from equation 

(10). Multiplying equation (10) from left by 0

n and using the Hermitian nature of H
0
 , we get  

     1 2 10 0 0 0 (1)| (19)n n n n n n n nH E E         

The form of 
 1

n , equation (16) suggests that the second term on the right vanishes therefore  

(2) 0 (1) (20)n n nE H   

 
0 0 0 0

2

0 0 0 0

' | | ' | |
(21)

m n n m

n

m mn m n m

H H m H n n H m
E

E E E E
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If H is Hermitian mHn | = nHm |

 Then  

 

2

2

0 0

' |
(22)n

m n m

m H n
E

E E


 


  

Since 
2

| nHm   is always positive, the sign of the correction is determined by the 

denominator. The 2
nd

 order correction in energy in level n due to levels for which 00

mn EE   is 

positive whereas that due to levels for which 00

mn EE  is negative.  

Second order correction to the wave function:  

The second order correction to the wave function  2

n is written as a linear combination of the 

unperturbed wave function of the system  

  )23(02 
k

kkn b   

Substitution of equation (23) in equation (10) and multiplication from left by 0

l gives  

 1' 0 (2) ' 0| |m k n m n k n

m k m k

a l H m b l H k E l n a E l m b E l k         

The first term on the right is zero. Rearranging we get:  

0 0 (1) '( ) 'l l n n l m

m

b E E E a a l H m    

Substituting the values of the a’s and (1)
nE , we have 

     

    

0 0 0 0 0 0

20 0 0 0

| | ' | |

' | | | |
(24)

l o o
ml n n l n m l n

o o
m n m n l n l

n H n l H n m H n l H m
b

E E E E E E E E

m H n l H m n H n l H n

E E E E E E

   
 

   

   
               

  




 

The normalization condition of the wave function shows that the coefficient bn is zero. It follows 

that the energy and wave function of the system corrected to second order in the perturbation is  
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2

0

0 0

0 ' 0 ' 0

' |
| (25)

(26)

n n

m n m

n n m m l l

m l

n H m
E E n H n

E E

and

a b   


    



   



 

 

where the coefficient am and bl are given by equation (15) and (24) respectively. The prime on 

the sum again signifies the omission of the states m=n or l=n as the case may be.  

c. Anharmonic oscillator: first order correction  

Consider a particle of mass m subjected to a one dimensional potential  

)27(
2

1
)( 422  bxxmxV   

where  is the angular frequency and b is a small parameter independent of x. If b were zero, the 

potential would correspond to that of a harmonic oscillator. The inclusion of the term bx
4
 in the 

potential changes the system from a harmonic oscillator to an anharmonic oscillator. We 

calculate the first order correction to the ground state energy which is given by  

 1 40 | 0 (28)E bx   

In terms of creation (
†a ) and annihilation (a) operators  

  )29(
2

2
1









 aa

m
x




 

and      
2

(1) 0 | 0 (30)
2

E b a a a a a a a a
m

    
      

 


 

when expanded, the expression on the right will have 16 terms with four factors of a or 
†a or 

both. A product operator like 
† †a aa a gives zero for the matrix element since 0 0a  . Also in a 

product operator like 
† † †aa a a , the number of a‘s and 

†a are unequal. In such a case † † † 0aa a a  

will be different from 0 leading to zero value for † † †0 0aa a a .Hence the two non-vanishing 

terms in the present case will be † † † †0 0 0 0aaa a and aa aa . The relations: 

† 1 1 1 (31)a n n n and a n n n        
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Then the corrected ground state energy is  

)34(
2

3
2

1
2

0 












m
bE


  

 

d. Degenerate energy levels: 

The unperturbed wave function 0

n is a unique one in the non degenerate case. When degeneracy 

exists, a linear combination of the degenerate wave functions can be taken as the unperturbed 

wave function. For simplicity, consider a case in which 0

nE is twofold degenerate. Let 0

n  and 

0

l be eigen functions corresponding to eigen values 0

nE = 0

lE and a linear combination of the two 

be  

)35(00  llnn CC   

where Cn and Cl are constants. 

First order corrections:  

Replacing 0

n in equation (9) by  we get  

0 0 0 (1) (1) 0 0 0 (36)o
n n l l n n n n l l n nH C C H E C C E             

Multiplying equation (36) from left by 0

n we have  

0 0 0 0 0 0 (1) (1) 0 0 (1)| | | (37)n n n l n l n n n n n n nC H C H H C E E               

Since H
0
 is Hermitian  

0 0 (1) 0 0 (1)| (38)n n n n nH E      

And equation (37) reduces to  

 (1) 0 (39)nn n n nl lH E C H C      

Operating equation (36) from left by 0

l we have  

 (1) 0 (40)lm n ll n lH C H E C      
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Equation (39) and (40) together form a set of simultaneous equations for the coefficient Cn and 

Cl. A nontrivial solution of these equations exists only if the determinants of the coefficients 

vanish. 

' (1)

(1)
0 (41)

nn n nl

l n ll n

H E H

H H E


 

  
  

This is called the scalar equation and its solutions are  

     
1( )

2 21 ' 21 1
4 | |

2 2
n nn ll nn ll nlE H H H H H

        
 

 

Now the corrected energies are  

0 (1)
n n nE E E   and )43(10  nnl EEE  

Both the energies will be real as the diagonal matrix elements nnH   and llH   of the Hermitian 

operator H
1
 are real. if nnH  = llH   and 0,nl n nH E E 

   and the degeneracy is not removed in 

the first order.  

When the two roots of equation (41) are distinct, each can be used to calculate the ratio cn/cl 

either from equation (39) or from equation (40). The normalization condition 122  ln CC allows 

us to calculate the values of Cn and Cl. The values of Cn and Cl thus determined gives the desired 

linear combination associated with the level 0 (1)
n nE E  can also be evaluated. 

e. Effect of electric field on the n=2 state of hydrogen: 

The first excited state (n=2) of hydrogen atom is four fold degenerate since it has the (l,m) values 

(0,0), (1,0), (1,1) (1,-1). As before, let the electric field E be applied along the +ve z-axis which 

interacts with the electric dipole moment giving the perturbing Hamiltonian 

coserEeEzH   . The four degenerate states may conveniently be specified by the quantum 

number (n l m) as  

: 200 , 210 , 211 , 2 1 1nlm   

As the state is four fold degenerate, the application of the perturbation theory for degenerate 

states requires the evaluation of sixteen matrix element of H
1
 . Of these, the four diagonal 

elements are zero since they correspond to the same parity (H
1
 is of odd parity). The off diagonal 

matrix elements between states of different m values (10 in numbers) are zero since  
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2

0
exp 0i m m d if m m


        

The remaining two matrix elements 200 | 210 210 | 200H and H  are the only non 

vanishing ones. These can be evaluated using the values of  

200 3
2 0 0

0

210 3
2 0 0

0

2
2 2 2

4
0 00 0 0 0

2 4

4 0
0

1 1
2 exp (44)

24 2

1 1
exp cos (45)

24 2

200 | 210 2 exp cos sin
32

cos sin 2
16

r r

a aa

r r
and

a aa

eE r r
H r r dr d d

a aa

eE
d r

a

 






 


   


  



   
     

   

 
  

 

   
     

   

 

  


5

0
0

exp
o

r r
dr

a a

    
   

  


 

Using standard integrals we have  

200 | 210 3 (46)

, 210 | 200 3 (47)

o

o

H eEa

similarly H eEa

   

   
 

The perturbation matrix is therefore  

       

 
 

 

 

(200) 210 211 21 1

3200 0 0 0

210 483 0 0 0

0 0 0 0211

0 0 0 021 1

o

o

nl m

eEa

H eEa



 



  



 

The secular determinant is then  

          =

(1)
2

(1)
2

(1)
2

(1)
2

3 0 0

3 0 0
(49)

0 0 0

0 0 0

o

o

E eEa

eEa E

E

E
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The four roots of this determinantal equation are 3eEa0, -3eEa0, 0 and 0. The states 200  and 

210 are affected by the electric field whereas the states 211 and 21 1 are not. The four fold 

degeneracy is thus lifted partially eigen states corresponding to these eigen values can be 

evaluated using equations (39) or (40) and the normalization condition for the coefficients for the 

eigen value 3eEa0, from equation (39) Cn/Cl = -1 and the condition 122  ln CC gives 

2
1nC and 

2
1lC . The eigenstate corresponding to the eigenvalues 3eEa0 is then 

 200 210

2


.In a similar way the eigen states of the eigen value  -3eEa0 is 

 200 210

2


 

The energy field along with the eigenstates of the n=2 state of the hydrogen atom in an electric 

field E along the z- direction is as shown. 

 

The hydrogen atom in the first excited states thus possesses a permanent electric dipole 

momentum of magnitude 3ea0 with three different orientations, one state parallel to the external 

electric field, one state antiparallel to the field and two states with zero component along the 

field. The states  211  and 21 1  do not possess dipole moments and therefore do not have a 

first order interaction with the field. 

14.3 Let us sum up:  

We have discussed the stationary state perturbation theory for both first and second orders. We 

have discussed in detail the degenerate and non degenerate cases and their examples for the two 

cases separately.  

14.4 Questions for self study: 

1. Explain briefly the principle of time-independent perturbation theory. 
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2. Explain the first order and second order correction to the energy and wavefunction for the       

non-degenerate for the non-degenerate energy levels? 

3. Discuss the first order correction for the anharmonic oscillator. 

4. Discuss the first order correction for degenerate energy levels. 

5. Discuss the effect of electric field on the n = 2 state of hydrogen. 

 

14.5 Further references: 

 Quantum Mechanics by Aruldhas 

 Introduction to Quantum Mechanics by D.J.Griffiths 
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Unit-15: Variational methods, ground state of helium atom, semi classical methods, sudden    

approximation, adiabatic expansion 

 

Structure: 

15.0 Objectives 

15.1 Introduction 

15.2 Contents of the units: 

a) The Variation method. 

b) Physical applications of variation method. 

i)  Ground state of helium. 

ii) Zero point energy of one dimensional Harmonic oscillator. 

c) Adiabatic approximation  

d) Sudden approximation. 

15.3: Let us sum up 

15.4 Key words 

15.5 Questions for self study 

15.6 References for further study 
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15.0 Objectives: 

After studying this unit you will be able to understand  

 The variational methods  

 The example of ground state of helium atom  

 Semi classical methods 

 Sudden and adiabatic approximation. 

 

15.1 Introduction 

There are many problems in Quantum Mechanics which cannot be conveniently solved either by 

direct solution of wave equation or by the use of perturbation theory. The Helium atom is one 

such system. No direct method of solving the wave equation has been found for this atom and the 

application of perturbation theory is unsatisfactory because the first order approximation is not 

accurate enough, which is why the method conveniently used for such systems is ‗Variation 

method‘. The Variation method is especially applicable for the interest in chemical problems. In 

special cases, Variation method can be extended to the state of the system other than lowest one. 

The variation method may also be applied to the lowest state of the given resultant angular 

momentum and of given electron spin multiplicity. 

 

15.2 Contents of the units: 

e) The Variation method. 

f) Physical applications of variation method. 

iii)  Ground state of helium. 

iv) Zero point energy of one dimensional Harmonic oscillator. 

g) Adiabatic approximation  

h) Sudden approximation. 

i)  

a) The variation method:  

The expectation value of energy in normalized state  is given by  

 * 1E H d     
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If we choose the wave function  as variable function then the integral (1) is known as 

variational integral and gives an upper limit to the energy E0 of the lowest state of the system. 

The function  is the variation function and its choice may be quite arbitrary but more wisely it 

is chosen such that E approaches more closely to E0. 

If the variation function  equals the function 0 of the lowest states then energy E will be 

equal to E0 i.e.,  

 *
0 0 0 2E H d E      

If 0   then by expansion theorem  may be expanded in terms of a complete set of 

orthonormal function 0 1, 2,   obtaining  

* 1 (3)n n n n n n n

n n

a with a a and H E        

Substituting this in equation (1) we get  

 * *

* *

* *

*

*

2

4

sin 1

0

(5)

n m n m

n

m m m

n m n m m

n

n m m n m

n

n m m nm

n

nm
n m n

n

n n

n

E a a H d

But H E

we have E a a E d

a a E d

a a E

ce for m n
E a a E

for m n

a E

  

 

  

  





 









  
   

  

   

 

 

 







 

Subtracting ground state energy E0 from both sides we get  

   
2

0 0 6n n

n

E E a E E     

As |an|
2
 is positive and n 0E E (always) for all values of n; therefore right hand side is positive 

or zero. Thus, we have proved that <E> is always an upper limit to E0 i.e.,  

 0 7E E         
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This theorem is the basis of the variation method for the calculation of the approximate eigen 

values of the system. If we choose a number of wave functions 1,2,3 ........ and calculate the 

values E1,E2,E3........ corresponding to the them, then each of these values of E is greater than 

the energy E0 so that the lowest one is the nearest to E0. Often the functions 1,2,3............are 

only distinguished by having different values of some parameter , the process of minimizing E 

w.r.t this parameter may then be carried out in order to obtain the best approximation to E0, 

which, from the trial function  is so chosen that it involves the variation parameter which may 

vary considerably with E0  

Ex: in the case of Helium atom this method has been applied with great success  

If function  is not normalized, equation (1) can be written as 

 
*

*

|
8

H dH
E or

d

   

    
 




 

Evaluating the integral on R.H.S of equation (1) or (8) with a trial function  that depends on 

the number of parameters and varying these parameters until the expectation value of the energy 

is minimum so that  

 
   1 2 1 2,

1 2,

, | | ,
, .....................(9)

n

n

H
E

       
  

 

 
   

These parameters are such that the expectation values of the energy take a value  

1 2

0, 0 0
n

E E E

  

  
    

  
  

Application to the excited state:  

The variation method can also be used to calculate an upper limit for one of the higher energy 

level if the trial function is orthogonal to the eigen function of all the lower states. Taking the 

energy levels in ascending series E0,E1.E2........ then if  is orthogonal to i for i=0,1,.........n, it 

is easily seen from (3) that the corresponding coefficient ai are zero and an inequality can be 

obtained from (5). 

The technique of choosing the trial function for evaluation of energy for any excited state is 

that- this function must be orthogonal to the eigen functions of all the lower states (arranged in 

ascending order of energy). For n
th

 excited state the trial function is chosen to be of the form  
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1

*

0

10
n

n n

n

a d    




                             

  is an arbitrary function and  '
0 1, 2 1. ., , ...........n ns i e       represent the eigen functions of 

lowest n states. If we expand  in the complete set of '
ns  we find that  

 *

0 0,1,2......... 1

| 11

n

n

a for n n

wehave

E H d H E    

  

   

 

This equation gives an upper limit to the energy of the n
th

 state. There are several cases in which 

such a situation may arise. The simplest example is a one dimensional problem in which 

independent variable x goes from - to + and the potential function is an even function of x : 

i.e., 

V(-x)=V(x) 

The wave function belonging to the lowest level of such a system is always an even function of 

x i.e.,  

   0 0x x    

while the 1 is an odd function. i.e., 

   1 1x x     

Therefore if we choose an even function for , we can only say that 0E E , but if it is an odd 

function, a0 will be zero and the relation 1E E  will hold. For such a problem, the variation 

method may be used to obtain the lowest energy levels. 

 

(b)Physical applications of Variation method: 

(i)Ground state of Helium (He): We use the variation method with a simple trial function to 

obtain an upper limit for the energy of the ground state of the helium atom. The helium atom 

consists of a nucleus of charge +2e and two electron each of charge ―-e‖.  

If we consider the nucleus at rest, the Hamiltonian will be  
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2
2 2
1 2

2
2

1 2 12

2

1 1
2 12

H
m

e
e

r r r


  

 
        

 



 

 

 

 

where 2 2
1 2and  and Laplacian operators for the first and second electrons at a distance r1 and 

r2 from the nucleus, r12=|r2-r1| is the distance between two electrons. If the interaction energy 

e
2
/r12 between two electrons were not present, the ground state eigen function of Helium would 

be product of two normalized hydrogen like wave functions u100(r1) u100(r2) given by  

      0 1 2

3
/

1 2 100 1 100 2 3
0

2

0 2

, ( )

2

z a r rz
r r u r u r e

a

with z and a
me




 
 

 


 

We shall use (r1,r2) as a trial function and treat z to be the variation parameters so that it is not 

necessarily equal to 2.  

The expectation value of Hamiltonian H is the sum of expectation values of Kinetic energy and 

potential energy individually.  

2

12

2

12

. .

int .

H K E P E

e
T V eracting energy i e of electrons

r

e
then H T V

r

 

 
     

 

  

 

Now the expectation values of hydrogen like atoms (having one electron) with Z-atomic 

number in general are  

2 2 2

0 0 1 0

2 1
, sin

2

z e ze z
T V ce

a a r a


    

But helium atom in ground state has two electrons, so it will be twice of hydrogen like atoms. 

i.e.,   
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2 2 2 2

0 0

2 2

0 0

2 2 2 2

0 0 12

2
13

2

2 4
2 14

4
15

z e z e
T

a a

and

ze ze
V

a a

Hence

z e ze e
H

a a r

  


    

   

 

 

Electron interaction energy:  

The expectation value of the interaction energy between the electrons is  

   

  0 1 2

2 2
* 3 3

1, 2 1 2 1 2,
12 12

2
2

2 /2 3 3
1 23

120

,

1 z a r r

e e
r r r r d r d r

r r

z
e e d r d r

ra

 



 



 
   
 





 

Substituting  

 1 2

1 1 2 2, 12 12
0 0 0

2 2
3 3

1 22
12 120

2 2 2

32

z z z
r and r r

a a a

e ze e
we get d d

r a

 

  

 


 

  

 

 

Solving the spherically symmetric integral with the knowledge of electrostatics as in 

perturbation theory, we get,  

 

2 2
2

2
12 0

2

0

20
32

5
16

8

ze

r a

ze

a





 

 

 

The expectation value of Hamiltonian (15) for the trial function is 

2 2 2 2 2
2

0 0 0 0

4 5 27

8 8

e z e z e z e
H z z

a a a a

 
     

 
 

 Differentiating with respect to z and for minimum <H>  
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2
2

0

27
0

8

27
1.69

16

H e
z z

Z z a

this gives z

     
    

     

 

 

Thus the lowest upper limit for the ground state energy of helium atom obtained with trial 

function  

2 22 2 2

0 0 0

27 27 27 27
2.85 (17)

10 8 16 16

e e e

a a a

    
           

     

 

Using perturbation method, the ground state energy of helium atom comes out -2.85 e
2
/a0 where  

2

0 2
0

a
m e




                                                                                                                                 

 The hydrogenetic wave functions give the best energy value when z =27/16 rather than 2. It 

indicates that each electron screen the nucleus from the other electron, therefore the effective 

nuclear charge being reduced (i.e.,
27 5

2
16 16

  ) by of an electronic charge.  

Hence ―effective charge‖ in the nucleus is less than 2  

 

(ii) Zero point  energy of one Dimensional harmonic oscillator: 

The one dimensional harmonic oscillator is simply a point mass m executing simple harmonic 

motion in one dimension. 

 The Hamiltonian of the system is: 

2
21

2 2

xP
H kx

m
   

where k is force constant given by 2,c ck m  being angular frequency of free oscillations and 

xP
i x







 

 
2 2

2 2

2

1
18

2 2
cH m x

m x


 
  




 

We choose a trial wave function (x) which satisfies the following condition  
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*

*

min (19)

1 ( )

E H dx imum

subjected to dx normalisation condition

 

 









  






 

The normalization condition for real  means that (x) must be an even function of x. More over 

as the integral must be convergent; ||
2
→0 as x→. These properties suggest the simplest 

function  

   
2

20xx Ae     

Where A is a constant and  is a variation parameter. Then the equation (3) provides  

2 2

2

* *

2 2

1

1

x x

x

dx A e Ae dx

or

A e dx

 



 
   

 

 



 



 



 

or  

2
1

2
A




  

This gives  

1 4
2

A




 
  
 

 

Choosing undetermined phase factors to be zero, we may write  

 
1 4

2
21A





 
   
 

 

Now 

 

2

2

2 2
2 2

2

2 22
2 2

2

1

2 2

4 2
2

x
c

xc

H m x Ae
m x

mA
x e

m





 


 





 
   

  

  
      

   







 

Equation (19), for expectation value of energy gives  
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2 2

2

2 2

2 22
2 2

2

2 22 2
2 2 2

2

2 22 2 2 2
2 2 2 2

4 2
2

4 2
2

4 .2
2 2

x xc

xc

x xc

mA
E Ae x e dx

m

mA
x e dx

m

mA A
x e dx e dx

m m

 



 


 


 


 

  



 



  

 

    
            

   
      

   

 
     

 





 









 



 

Using the standard integrals  

 

2

2

2

2 2

3

2 22 2 2 2
2

3

2 22 2

2

2

1 1

2 4 22

1
4 . .2

2 4 2 2 2

2
2 2 4

x

x

c

c

e dx

and x e dx

we get

mA A
E

m m

mA

m









 

 

  
 

  


 

 

 



 





 

 
    

  

 
    

  





 







 

2 2
,As A we have




  

 

 

2 22

2

22

22

22

2

2 4

22
2 8

min , 0

0
2 8

. 0
2 8

23
2

c

c

c

c

c

m
E

m

m

m

E
For imum E

E m

m

m
i e

m

This gives

m















  








 
  

  

   






  
   

    

 

 













 

Substituting this value of  in equation (22), we have minimum energy 
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2 22 1
(24)

2 2 4 4 2
8

c c c c
c

c

m m
E

m m

   



         

 
  
 

 






 

This is well known expression for zero point energy of harmonic oscillator. The required 

function of the oscillator in ground state will be given by  

 

   

2 2

2

2

1
4

1 4
/2

1/4
/2

2

2

2

. ., 25

c

c

x x

m xc

m xc

x Ae e

m
e

m
i e x e

 



















 





 
   

 

 
  
 

 
   
 









 

 

(c) Adiabatic Approximation:  

The adiabatic approximation the perturbation is turned on very slowly. In this approximation we 

expect on physical grounds that solution of the Schrödinger equation can be approximated by 

means of stationary eigen functions of instantaneous Hamiltonian so that a particular eigen 

function at one time goes over continuously into corresponding eigen function at a later time.  

Let us try to solve Schrödinger equation  

   26i H t
t





           


  

where H(t) varies slowly with time. Under this condition we may expect that a good 

approximation should be given by solving equation(9) at each instant of time under the 

assumption that H is constant and is equal to instantaneous value '( ')H t  where 't   is the time at 

which H is required. The stationary state wave function is obtained by setting 't =t = constant 

and would satisfy the equation  
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0

0

, , 27

exp 28

exp ( ) 29

(26)

n n n

t

n n n

t

n n n

n

n
n n n

H t r t E t r t

The approximation solution is

i
t E t dt

In general

i
a t t E t dt

substituting this value in we get

i a t t a
t

 

 

 




        

 
       

 

 
       

 








 





    

 

 

 

0 0

0

0

0

exp exp

exp

exp

exp 0

ex

t t

n n n n n

n n

t

n n n

n

t

n n n n
n

tn
n n n n

n

n
n n n

n

i i
E t dt a E E t dt

i
H a E t dt

i
a E E t dt

or

i
i a a E t dt

t

or

a a
t













     
          

     

 
   

 

 
   

 

   
     

   

 
 

 

  

 

 

 



 








 
0

p 0
t

n

i
E t dt

 
   

 


  

Multiplying by  *

0
exp

t

f f

i
E t dt

 
  

 


and integrating over all space, we get  

   * *

0 0
exp exp 0

t t
n

n n f n f n f n f

n n

i i
a E E dt d a E E dt d

t


    

   
         

   
     

 

Using condition of Orthonormality we get, 

 

 

*

0

*

0

exp

.exp (31)

tn
f n f n f

n

tn
n m n f

n

i
a a E E d

t

i
a d E E dt

t
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*

*

* *

32

(32)

int ,

n
f f n

n n n

n n n
n n n

f

n
f n f

Evaluation of d
t

we have H t t E t t

Differentiating with respect to t we get

tH
H E

t t t t

Multiplying by and egrating over all space we get

H
d H

t


   

 

 
 




   






                

  
  

   








 

 

 

* *

*

** *

* *

*

* *

0 ,

. .,

n n
f n n f

f n

n n
f n f n f

f m f

n
f n f f

n
n f

n
f n f f n

E
d d E d

t t t

As d and H is Hermitian we get

H
d H d E d

t t t

As H E

H
d E d

t t

E d
t

H
i e E E d d

t t

This gives


     

  

 
      

 


    


 


    



 
 

  



 
 

  




 

 






 
  

 

 



  

 



 

 

 

 

 

 

*

*

*

*

0

*

33

31

exp

exp

f n
n

f
f n

f n

n f

t

f n n f

f n
n fn f

f n n f

f n
n fn f

H
d

td
t E E

H
d

t for n f
E E

Substituting this value in we get

H i
d E E dt

t
a a

E E

or

H i
d E E dt

t
a a

E E

  




  

  

  






        
 



 


  
  

   


   
    

    







 








  

We now apply the method of variation of constants.  

Let the system start with  ak=1 and an=0 for  n ≠ k.  
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Solving this by successive approximations,  

   

*

|

exp 35

|

f k f
k f

f k

H
f k

it
a E E t

E E

H H
where f k d

t t
  



  
          

  

 


 

  

To evaluate the matrix element, we can neglect the slow change of 
fk

H

t

 
 
 

and integrate eqn 

(35), so that   

 

 
 

    

2

2

|

| exp 1

(36)

1
| exp 1 37

k f

i
E E tt

f
k f

f k f

k f

k f fk

f k

fk

H
f k

t
a e dt

E E

or

i H i
a f k E E t

tE E

But E E

H
a f k i t

ti






 






 



   
      

   

 


   



 









 

The total probability in the interval 0 to t is given by  

2

2

2 4

2

2

|

1

1
| 1

f

fk

k

fk

H
f k

t
a

The condition that a requires

H
f k

t





















 

Thus for adiabatic approximation |
H

f k
t




 should be enough, but should be appreciable.  

                                                          

(d) Sudden approximation:  

The sudden approximation occurs when the Hamiltonian changes approximately during a very 

short but finite interval of time to. Sudden approximation consists of the change in Hamiltonian 
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discontinues on different times. Let to be the duration and to consider sudden approximations, we 

again consider equation (35)  

i.e.,  

   
|

exp 38f k f
k f

H
f k

it
a E E t

E E



  
         

  
                  

In the sudden approximation, the variation of  
H

t

 
 
 

 cannot be neglected so  

 
 

 
 

 
     

0

0

0

0

0

0

|

exp

| ( )
exp

| ( )
exp 39

t

f k f

k f

t

k f

k f

t

k f k f

k f

H
f k

it
a E E t dt

E E

f H t k i
E E t

E E

f H t k i i
E E t E E t dt

E E



  
   

  

 
  

    
    

  
       

   









 

 

The condition of sudden approximation, by the help of uncertainty relation ∆E ∆t   is 

expressed (since ∆t=t0 is very small) as 

 0 40t
E
         




 

The physical interpretation of this condition is that of the energy of the system changes by an 

amount ∆E. In a time t0 which is much less than the characteristic time associated with energy 

change, then the state of the system remains unaltered and so | ( )f H t k =0 ; so equation (39) 

becomes  

   0

0
| ( ) exp 41

t

f k f

i i
a f H t k E E t dt

 
           

 
 

 

If k   is the angular frequency of the transitions from initial state f then  

 0

0
| ( ) 42fk

f k
fk

t i t
f

E E
so that we may write

i
a f H t K e dt
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When perturbation is switched on suddenly H(t) changes instantaneously in time ∆t which is 

small compared to period  
1

fk


so that the factor fk
i t

e


in the above integral changes a little 

and hence can be taken outside the integral, then we get  

0

0
| ( )fk

ti t
f

i
a e f H t K dt


 

 

 

 

0 0

0

| ( ) ( )

| 43

fk

fk

i t

i t

i
e f H t H o k t

it
e f H k





 

  





 

where 0( ) ( )H H t H o   and may be taken as the maximum value of interaction during its sudden 

switch on. 

Therefore,  sudden probability of transition from state k to state f will be given by:  

 
2

2
2 20

2 2 2

|
| 44f

fk

f H kt
a f H k




       

 
 

This equation may be used to evaluate the probability for transition under the influence of sudden 

perturbation which is sufficiently small so that the perturbation theory may be applied.   

 

15.3: Let us sum up: 

After studying this unit, we have understood the variational principle, examples of this method, ground 

state of helium atom and zero point energy of one dimensional harmonic oscillator. We have also learnt 

the adiabatic and sudden approximation method. 

 

15.4 Key words: 

  variational method, adiabatic approximation and sudden approximation. 

 

15.5 Questions for self study: 

1. Discuss the variational method for obtaining approximate energies. Use it to find the ground state 

energy of helium atom. 

2. Discuss the general theory of the variational principle. Show that this method can be used to obtain the 

zero point energy of one dimensional harmonic oscillator. 

3. Write a short note on 
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    a. adiabatic approximation 

    b. sudden approximation 

4. Give an account of adiabatic and sudden approximations. 

 

15.6 References for further study: 

  1. Modern Quantum Mechanics by J.J.Sakurai 

  2. Introduction to Quantum Mechanics by D.J.Griffiths 

  3. Introduction to Quantum Mechanics by ArulDhas 
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Unit-16 Time dependent potentials interaction picture, two state  problems, time dependent 

perturbation theory, constant and harmonic perturbations and Fermi‘s golden rule,  applications 

to interactions with classical radiation field. 

 

Structure: 

 16.0 Objectives 

16.1 Introduction 

16.2 Contents of the unit 

a) Time dependent potentials  

b) Interaction picture. 

c) Two state problems.  

d) Time dependent perturbation theory. 

e) Transition probability. 

f) Harmonic perturbation. 

g) Application to interactions with the classical radiation field. 

16.3 Let us sum up 

16.4: Questions for self study 

            16.5 References 
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16.0 Objectives: 

After studying this unit you will be able to understand. 

 The time dependent potentials  

 Interaction picture  

 Two state problems  

 Time dependent perturbation 

 Fermi- golden rule 

 Classical radiation field etc.  

 

16.1 Introduction 

In the last two units we have considered the Hamiltonians that do not contain time explicitly. 

Actually, in nature there are many quantum mechanical systems of importance with time 

dependence. So we have to consider these potentials and find out the solutions of such problems.  

 

16.2 Contents of the unit: 

h) Time dependent potentials  

i) Interaction picture. 

j) Two state problems.  

k) Time dependent perturbation theory. 

l) Transition probability. 

m) Harmonic perturbation. 

n) Application to interactions with the classical radiation field. 

 

a) Time dependent potentials:-  

Let us consider Hamiltonian H such that it can be split into two parts. 

H=H0+V(t)...................(1)  

where H0 does not contain time explicitly. The problem V(t)=0 is assumed to be solved in the 

sense that the energy eigenkets |n> and the energy eigenvalues En defined by  

 0 0 2H n E n                  
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are completely known. We may be interested in situations where initially only one of energy 

eigen states of 0H - for example i  is populated. As time goes on however states other than i

are populated because with V(t)≠0 we are no longer dealing with stationary problems; the time 

evolution operator is no longer as simple as 
iHt

e
  when H itself involves time. Quite generally 

the time- dependent potential V(t) can cause transitions to states other than i . The basic 

equation we address is- what is the probability as a function of time for the system to be formed 

in n  with n≠i ?  

More generally we are interested in how an arbitrary state ket changes as time goes on where the 

total Hamiltonian is the sum of H0 and V(t). Suppose at t=0, the state ket of physical system is 

given by  

 

 0

(0) 3

( ) 0

, 0; ( ) 4
n

n

n

n

iE t

n

n

c n

We wish to find C t for t such that

t t C t e n






 



  



 

 

where the ket on the left stands for the state ket in the Schrödinger picture at t of a physical 

system whose state ket at t=0 was found to be  . 

 

(b)  The interaction picture: - 

Let us consider a physical system such that its state ket coincides with   at t=t0, where t0 is 

often taken to be zero. At a later time we denote the state ket in the Schrödinger picture by 

0, ;
s

t t , where the subscripts S reminds us that we are delaying with the state ket of the 

Schrödinger picture. 

We now define  

 0
/

0 0, ; , ; 5
iH t

t s
t t e t t        

  

where , stands for a state ket that represents the same physical situation in the interaction 

picture at t=0, 
t
 evidently coincides with 

S
. For operator (representing observables) we 

define observables in the interaction picture as  
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0 0

0 0

/ /

/ /

6

,

7

iH t iH t
I s

H t iH t
I

A e A e

In particular

V e Ve

 

 

 

 

 

 

 

where V without a subscript is understood to be the time independent potential in the 

Schrödinger picture. We know the connection between the Schrödinger and the Heisenberg 

picture  

 

 

/
0

/ /

, 0; 8

9

iHt

H s

iHt iHt
H s

e t t

A e A e

 



           

             



 
 

The basic difference between (8) and (9) on the one hand and (6) and (7) on the other is that H 

rather than H0 appears in the exponential.  

We now derive the fundamental differential equation that characterized the time evolution of a 

state ket in the interaction picture. Let us take the time derivative (5) with the full H given by (1)  

 

 

 

 

0

0 0

0 0 0

/
0 0

/ /
0 0 0

/ / /
0

0 0

, ; , ;

, ; , ;

, ; 10

, ; , ; 11

iH t

t s

iH t iH t

s s

iH t iH t iH t

s

It I

i t t i e t t
t t

He t t e H V t t

e V e e t t

We thus see

i t t V t t
t

 

 



 



 


 

   

 


 





 

  

 



 

which is a Schrödinger- like equation with the total H replaced by VI. In other words 0, ;t t I 

would be a ket fixed in time if VI were absent. We can also show for an observable A (that does 

not contain time t explicitly in Schrödinger picture) that  

, 0

1
(12)I

I

dA
A H

dt i
              

 

which is a Heisenberg like equation with H replaced by H0. 

The interaction picture or Dirac picture is intermediate between the Schrödinger picture and the 

Heisenberg picture. This is shown in the table  

 

 Heisenberg picture Interaction picture Schrodinger picture  

State ket No change Evolution 

determined by VI 

Evaluation 

determined by H 

Observable Evolution determined 

By H 

Evolution 

determined by H0 

No change 
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In the interaction picture we continue using n as our base kets. Thus, we expand 
t
 as follows  

 0, ; | (13)nt
n

t t c t n   

With t0 set equal to 0, we see that the Cn (t) appearing here are the same as the cn(t) introduced 

earlier in equation (4) as can easily be verified by multiplying both sides of equal (4) by /
o

iH te 

using equation (2). We are finally in a position to write the differential equation for Cn(t). 

Multiplying both sides of equation (11) by n  from the left we obtain  

0 0, ; | , ;II I
m

i n t t n V m m t t
t

 





  

This can also be written using  

   

   

 

0 0
// /

0

( ) |

( ) , ;

(13)

(15)

(16)

n m

nm

i E E tiH t iH t
nm

n t

i t
n nm m

m

n m
nm mn

n e V t e m V t e

and C t n t t

From eqn

d
i c t V e c t

dt

where

E E





 











  



 





 

Explicitly  

12

121

11 12
1 1

21 22
2 2

33
3 3
: :

::

. .

. .
(17)

' . .

. . . .

i t

i t

V V e
c c

V e V
i c c

V
c c





 
    
    
         
       

    
 

  

This is the basic coupled differential equation that must be solved to obtain the probability of 

finding n  as a foundation of t. 

 

(c)Time dependent two state problems: 

Exact solvable problems with time independent potentials are rather rare. In most cases we resort 

to perturbation expansion to solve the coupled differential equation (17), as we will discuss in the 
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next section. There is however a problem of enormous practical importance which can be solved 

exactly as a two state problem with a sinusoidal oscillating potential. 

The problem is defined by  

 
 

 

0 1 2 2 11 1 | 2 2 |

1 2 | 2 1 (18)i t i t

H E E with E E

V t e e   

   

 
 

Where  and  are real and positive. In the language of equation (14) and (15) we have  

*
12 21

11 22 0 (19)

i tV V e

V V

 

 
 

We thus have a time dependent potential that connects the two energy eigen states of H0. In other 

words we can have a transition between the two states 1 2 . 

An exact solution to this problem is available. If initially at t=0 only the lower level is populated 

so that  

   1 20 1 0 0 (20)C and C   

Then the probability for being found in each of the two states is given by (Rabi‘s formula) 

 
 

 

   

 

1 2
22 2 2

2 212
2 2 2

2 2 21

2 2

1 2

2 1
21

sin (21 )
4

4

1 (21 )

,

(22)

c t t a

c t c t b

where

E E

  

 




   
   
      

 











 

Let us now find 
2

2c . We see that the probability for finding the upper state E2 exhibits 

oscillatory time dependence with angular frequency two times that of  

 
22

21

2
(23)

4

   
    

   

The amplitude of oscillation is very large when  

 2 1
21 (24)

E E
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That is when the angular frequency of the potential usually due to an externally applied electric 

field or magnetic field is nearly equal to the angular frequency characteristic of the two state 

systems. Equation (24) is therefore known as the resonance condition  

It is very interesting to look at (21a) and (21b) a little closely exactly at resonance: 

21, (25)


   
  

We can plot    
2 2

1 2C t and C t as a function of t: it‘s shown in figure  

 

 

From the time t=0 to 2 ,t     the two level system absorbs energy from the time dependant 

potential  
2

1( ) :V t C t decreases from unity as   
2

2C t grows. At 2t    , only the upper 

state is populated. From 2t    to t    , the system gives up its excess energy to V(t) ; 

2
2c decreases and 

2
1c increases . 

This absorption emission cycle is repeated indefinitely as is also shown in above figure. So, V(t) 

can be regarded as a source or sink of energy; put in another way V(t) can cause a transition from 

1 to 2  (absorption) or from 2 to 1  (emission). We will come back to this point of view 

when we discuss emission and absorption of radiation. 

The absorption-emission cycle takes place even away from resonance. However, the amplitude 

of oscillation for 2  is now reduced.  
2

2C t max is no longer 1 and  
2

1C t does not go down all 

the way to 0. In the following figure,  
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We plot  
2

2 max
C t as a function of . This curve has a resonance peak centred around =21 

and the full width at half maxima is given by 4 /  . It is worth noting that the weaker the time- 

dependent potential ( small) the narrower the resonance peak. 

 

(d)Time dependent perturbation theory: 

Dyson Series:  

With the exception of a few problems like the two level time- dependent problems of the 

previous section, exact solutions to the differential equation for Cn(t) are usually not available. 

We must be content with approximate solution equation (17) obtained by perturbation expansion  

(0) (1) (2)( ) (26)n n n nC t C C C     

where (0) (1), ...........n nC C  signify amplitudes of  first order, second order and so on in the strength 

parameter of the time dependent potential. The iteration method used to solve this problem is 

similar to what we did in time independent perturbation theory. If initially only the state i is 

populated, we approximate Cn on the right hand side of differential equation (17) by 0
n niC 

(independent of t) and relate it to the time derivative of (1)
nC , integrate the differential equation to 

obtain the differential equation for (2)
nC and so on. This is how Dirac developed time dependent 

perturbation theory in 1927.  

Instead of working with Cn(t) we propose to look at the time evolution operator Ut(t,t0) in the 

interaction picture, which we will define later. We obtain a perturbation expansion for Ut(t,t0) 

and at the very end we relate the matrix elements of UI to Cn(t). If we are interested only in 

solving simple problems in non relativistic quantum mechanics, all this might look superfluous; 
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however the operator formalism we develop is very powerful because it can immediately be 

applied to more advanced problems such as relativistic quantum field theory and many body 

theory.  

The time evolution operator in the interaction picture is defined by  

 0 0 0 0, ; , , ; (27)It I
t t U t t t t   

Differential equation (11) for the state ket of the interaction picture is equivalent to  

     0 0, , (28)I I I

d
i U t t V t U t t

dt
  

We must solve this operator differential equation subject to the initial condition  

 
0

0, | 1 (29)I t tU t t    

First let us note that the differential equation together with the initial condition is equivalent to 

the following integral equation  

     
0

0 0, 1 , (30)
t

I I It

i
U t t V t U t t dt    

 

We can obtain an approximation solution to this equation by iteration  

       

     

     

0 0

0 0 0 0 0

( 1)

0

0 0

2
' '1

( )

, 1 1 ,

1 ' ' '

......................
n

t t

I I I It t

n
t t t t t

I I It t t t t

t n n
I I It

i i
U t t V t V t Ü t t dt dt

i i i
dtV t dt dt V t V t dt dt

dt V t V t V t


 
       
 

    
           

   

     

 

    



 

  

 ..................... 31

 

This series is known as the Dyson series. Setting aside the difficult question of convergence we 

can complete UI(t,t0) to any finite order of perturbation theory. 

 

(e)Transition probability:- 

Once UI(t,t0) is given, we can predict the time development of any state ket for example if the 

initial state at t=0 is one of the energy eigenstates of H0; then to obtain the initial state ket at a 

later time, all we need to do is multiply by UI(t,0); 

 

   

0, 0; , |

,0 | 32

II

I
n

i t t U t o i

n n U t i
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In fact,  ,0 |In U t i  is nothing more than what we called Cn(t) earlier.  

We earlier introduced the time evolution operator U(t,t0) in the Schrödinger picture. Let us now 

explore the connection between U(t,t0) and UI(t,t0)  

 

   

     

0

0

0 0 0

0 0 0

/
0 0

/
0 0

/ /
0 0

/ /
0 0

, ; , ;

, , ;

, , ; 33

,

, , 34

iH t

I s

iH t

s

iH t iH t

I

iH t iH t
I

t t e t t

e U t t t t

e U t t e t t

So we have

U t t e U t t e

 











 

 





 

 

 

Let us now look at the matrix element of UI(t,t0) between energy eigen states of H0; 

 
 

 
0

0 0, | , | (35)
n i

i E t E t

In U t t i e n U t t i


   

We have  0, |n U t t i  is defined to be the transition amplitude. Hence our  0, |In U t t i  here 

is not quite the same as the transition amplitude defined earlier. However the transition 

probability defined as the square of the modulus of  0, |n U t t i is the same as the analogous 

quantity in the interaction picture 

   
2 2

0 0, | , | (36)In U t t i n U t t i              

If the matrix elements of UI are taken between initial and final states that are energy eigen states- 

for example between a and b  (eigen kets of A and B respectively) where [H0,A]≠0 and or 

[H0,B]≠0 we have in general  

   0 0, | , |Ib U t t a b U t t a     

as the reader may easily verify in problems where the interaction picture is found to be useful. 

The initial and final states are usually taken to be H0 eigen states. Otherwise all that is needed is 

to expand a and b  and so on in terms of the energy eigen kets of H0  

Coming back to  0, |In U t t i  we illustrate by considering physical situation where at t=t0, the 

system is known to be in state i . The state ket in the Schrödinger picture 0, ;
s

i t t is then equal 

to i  up to a phase factor. In applying the interaction picture it is convenient to choose the phase 

factor at t = t0 so that  
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 /
0 0, ; | 37i o

iE t

s
i t t e i

 
  

which means that in the interaction picture we have the simple equation  

 0 0, ; 38
I

i t t i                  

At a later time we have  

   0 0 0, ; , | 39II
i t t U t t i               

Comparing this with the expansion  

   0 0, ; | 40nI
n

i t t C t n               

We see  

     0, | 41n IC t n U t t i               

We now use the perturbation expansion for UI(t,t0). We can also expand Cn
(t)

 where Cn
(1)

 is first 

order in Vn(t), Cn
(2) is second order in VI(t) and so on. Comparing the expansion of both sides of 

(41), we obtain,  

     

     

 

     

   

0

0

0 0

0

1

2
2

/

|

(42)

"

43

ni

nm mi

n i ni

n ni

t

n It

t i t
nit

t t i t i t
n nm mit t

m

i E E t i t

C t independent of t

i
C t n V t i dt

i
e V t dt

i
C t dt dt e V t e V t

where we have used

e e



 









  





  

                 

 
     

 

                   





 









 

The transition probability for i n with n≠i is obtained by  

           
2

1 2
44n nP i n C t C t     

Constant Perturbation  

As an application of (42), let us consider a perturbation turned on at t=0;  

 
 

 
0 0

45
0

for t
V t

V independent of t for t
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Even though the operator V has no explicit dependence on time, it is in general made up of 

operators like x, p and S. Now suppose at t=0 we have only i , with t0 taken to be zero. 

We obtain  

     

 

   

 

 
 

0 0

1

0

2
2

(1)

2

2
2

2

0

1 46

2 2cos

4
sin 47

2

ni

ni

n n in

t i t
n ni

i tni

n i

ni
n ni

n i

ni n i

n i

C C

i
C V e dt

V
e

E E

or

V
C t

E E

V E E t

E E











 




             


 


 
        

  





 

The probability of finding n  depends not only on 
2

niV but also on the energy difference        (En-Ei), so 

let us try to see how equation (47) looks as a function of En. In practice we are interested in this way of 

looking at (47) when there are many states with EEn, so that we can talk about a continuum of final 

states with nearly the same energy. To this end we define  48n iE E



            


 

and plot of 
 2

2

4sin
2

t


as a function of  for fixed t, the time interval during which the perturbation 

has been show on the below figure. 
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We see that the height of the middle peak cantered around =0, is t
2
 and the width is 

proportional to 1/t . As t becomes large,    1
nC t



is appreciable only for those states that satisfy  

 
2 2

~ 49
n i

t
E E

 


             




 

If we call ∆t the time interval during which the perturbation has been turned on, a transition with 

appreciable probability is possible only if  

 ~ 50t E                     

where by ∆E we mean the energy change involved in a transition with appreciable probability. If 

∆t is small, we have a broader peak and as a result we can tolerate a fair amount of energy non 

conservation. On the other hand if the perturbation has been on for a very long time, we have a 

very narrow peak and approximate energy conservation is required for a transition with 

appreciable probability. Note that this uncertainty relation is fundamentally different from the x-

p uncertainty relation. There, x and p are both observables. In contrast, time in non- relativistic 

quantum mechanics is a parameter not an observable.  

For those transitions with exact energy conservation En=Ei, we have  

 
     

2
21 2

2

1
51n niC t V t          


 

The probability of finding n  after a time interval t is quadratic, not linear, in the time interval 

during which V has been ON. This may appear intuitively unreasonable. In a realistic situation 

where our formalism is applicable, there is usually a group of final states all with nearly the same 

energy as the energy of the initial state i . In other words,  a final state forms a continuous 

energy spectrum in the neighbourhood of Ei.  

Let us calculate the total probability -that is, the transition probabilities summed over final states 

with EnEi; 

   
2

1

,

52

n i

n

n E E

C


                  

It is customary to define the density of final states as the number of states within energy interval 

(E, E+dE) as  

    53E dE                 
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We can then write (52) as  

     

 
   

22
1 1

,

2
2

2
4 sin 53

2

n i

n n n n
n E E

nin i
n n

n i

C dE E C

VE E t
E dE

E E









 
  

 

 

 

 

As t→ we can take advantage of  

 
   

   

2

2

2

2

1
lim sin 54

2 2

1 sin
lim 55

n i
n i

t
n i

E E t t
E E

E E

x
Which follows from x

x







 





 
   

  

  

 
 

It is now possible to take the average of 
2

niV outside the integral sign and performed the 

integration with the  function  

         
2 21 2

lim | 56n n n ni n n i
t

dE E C t V E t E E


 


 
   
 

 
 

Thus the total transition probability is proportional to t for large values of E, which is the quite 

reasonable. Notice that the linearity in t is a consequence of the fact that the total transition 

probability is proportional to the area under the peak in the earlier figure where height varies as 

t
2
 and the width varies as 1/t. 

It is conventional to consider the transition rate- that is the transition probability per unit time. 

Equation (56) tells us that the total transition rate defined by  

   
2

1
57n

n

d
C

dt

 
                 

 
  

is constant in t for large t, calling equation (57)  i n  , where [n] stands for a group of final 

states with energy similar to i we obtain  

   
2

[ ]

2
58

n i
i n ni n E E

V E


  
          


 

Independent of t, provided the first order time independent perturbation theory is valid. This 

formula is called Fermi‘s Golden rule. We can also write (58) as  

   
22

59i n ni n iV E E
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(f) Harmonic Perturbation:- 

We now consider a sinusoidally varying time dependent potential commonly referred to as 

harmonic perturbation;  

   † 60i t i tV t e e       

where  may still depend on x, p, s and so on. Let us assume that only one of the eigen states of 

H0 is populated initially. Perturbation (58) is assumed to be turned ON at t=0. So, 

 
 

 

 

 

(1) †

0

†1 1 1
(61)

ni

ni ni

t i ti t i t
n ni ni

i t i t

ni
ni ni

i
C e e e dt

e e

 

   

 


   

 

 


 

  
          

    





 

The only change needed was  

   

 

2
1

62

0 63

0 64

n i
ni ni

n ni n i

ni n i

E E

So as t C is appreciable only if or E E

or E E

  

  

  


   

     

    







 

Clearly, whenever the first term is important because of equation (63) and (64), the second term 

is unimportant and vice versa. We see that, we have no energy conservation condition satisfied 

alone rather the apparent lack of energy conservation is compensated by the energy given out to 

or energy taken away from the external potential V(t)  

Pictorially it can be shown as in figure  

 

In the first case the quantum mechanical system gives up energy ;to V this is clearly 

possible only if the initial state is excited. In the second case the quantum mechanical system 
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receives energy   from V and end Y as an excited state. Thus a time dependent perturbation 

can be regarded as an inexhaustible source or sink of energy.  

We will use Fermi‘s Golden rule, we have  

   

 

2
[ ]

2
†

[ ]

2
| 65

2
|

n i

n i

i n ni n E E

i n n E Eni

E

E






  


  

  

  

 











 

or more commonly 

 

2

[ ] 2
†

2
(66)

n i

ni

i n E E

ni




 


  

 
 

  
 
 


 

Note also that  

 
22 † 67ni ni     

which is a consequence of  

 

 
 

 
 

*†| | 68

(65) (67) ,

69
[ ]

i n n i

Combining and we have

emission rate for i n absorption rate for n i

density of final states for n density of final states for i

     

 
 

 

where in the absorption case we let i stand for final states. Equation (69) which expresses 

symmetry between emission and absorption is known as ‗detailed balancing‘. 

  

(g) Interactions with the classical radiation field:- 

Absorption and stimulated emission  

We apply the formalism of time dependent perturbation theory to the interactions of atomic 

electron with the classical radiation field. By a classical radiation field, we mean the electronic or 

magnetic field derivable from a classical radiation field. 

The basic Hamiltonian with 
2

A omitted is  
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Which is justified if
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Specifically, we work with a monochromatic field of the plane wave for  

 0 ˆ ˆ2 cos . 72A A n x t
c




 
    

 

 
 

where ˆ ˆand n  are the (linear) polarization and propagation directions.  Equation (72) obviously 

satisfies (71) because ̂  is perpendicular to the propagation direction n̂ . We write  

     
ˆ/ . / .1
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c

   


                 



 

And treat  / .ee m c A P
 

 as time dependent potential where we express A in (72) as: 
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Comparing this result with equation (60) we see that the i te  term in  
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is responsible for absorption, while the i te  term is responsible for stimulated emission  

Let us now treat the absorption case in detail  

We have  
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The meaning of the -function is clear. If n  forms a continuum, we simply integrate with 

 nE . But even if n  is discrete because, n  cannot be a ground state; its energy is not 
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infinitely sharp; there may be a natural broadening due to a finite lifetime, there can also be a 

mechanism for broadening due to collision. In such cases we regard   :ni as    
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Finally, the incident electromagnetic wave itself is not perfectly monochromatic. In fact there is 

always a finite frequency width  

We derive an absorption cross section as: 

(Energy/unit time) absorbed by the atom (i→n) 

Energy flow of the radiation field  

For the energy flow (energy per area per unit time) classical electromagnetic theory gives us  
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where we have used
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For energy density energy per unit volume with
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Putting everything together, we get  

       

  

    

2
2 ˆ.2 2 2

0

22
0

2 2 2
ˆ.

2

ˆ2 .

1/ 2

4
ˆ . (83)

i c n x
e n i

abs

i c n x
n i

e

e m c A n e p i E E

c A

e
n e p i E E

cm





   


 


 



  


 
      

 






  

 




 

Equation (83) has the correct dimension  2 2 2 2 21/ / /M T M L T T L    
  

. If we recognize that 

2 / 1 / 137e c   and      1n i niE E         where  ni   has time 

dimension T.  
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16.3 Let us sum up: 

 After studying this unit you will be in a position to understand the time dependent 

potential, interaction picture, two state problems and the time dependent perturbation, Fermi‘s 

golden rule and applications to interactions with classical radiation fields. 

 

16.4: Questions for self study: 

1. Discuss briefly the time dependent perturbation theory and derive the expression    for 

the transition probability to a group of states per unit time. 

2. Write a short note on Fermi-Golden rule. 

3. Derive Fermi-Golden rule for constant perturbation that acts for a short interval of 

time. 

4. Show that the first order effect of the time dependent perturbation, varying sinusoidally 

in time leads to the emission or absorption of energy. 

5. Discuss the application of the time dependent perturbation to the interactions with the 

classical radiation field with respect to absorption and stimulated emission. 

6. Derive the principle of detailed balance starting from the harmonic perturbation. 

7. Write a note on Interaction picture of the time dependent potentials. 

 

16.5 References: 

  1. Modern Quantum Mechanics by J.J.Sakurai 

  2. Introduction to Quantum Mechanics by D.J.Griffiths 

  3. Introduction to Quantum Mechanics by ArulDhas 
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